Sciact
  • EN
  • RU

The identification problem for a nonsingular system of ordinary differential equations with fast and slow variables Full article

Journal Математические заметки СВФУ (Mathematical Notes of NEFU)
ISSN: 2411-9326 , E-ISSN: 2587-876X
Output data Year: 2021, Volume: 28, Number: 2, Pages: 3-15 Pages count : 13 DOI: 10.25587/SVFU.2021.58.21.001
Tags Chemical kinetics; Contraction mapping principle; Inverse problem; Ordinary differential equation; Small parameter
Authors Kononenko L.I. 1,2
Affiliations
1 Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, 1 Pirogov Street, Novosibirsk, 630090, Russian Federation

Abstract: An iteration algorithm of finding an approximate solution to an inverse problem in the nonsingular case (ε ≠ 0) is proposed. On each iteration step, the algorithm combines the inverse problem solution for the investigated case ε ≠ 0 and the direct problem solution which is reduced to the proof of existence and uniqueness theorem in case ε ≠ 0. We prove a theorem about the convergence of the proposed algorithm; the proof is based on the contraction mapping principle.
Cite: Kononenko L.I.
The identification problem for a nonsingular system of ordinary differential equations with fast and slow variables
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. Т.28. №2. С.3-15. DOI: 10.25587/SVFU.2021.58.21.001 Scopus OpenAlex
Identifiers:
Scopus: 2-s2.0-85112242482
OpenAlex: W4324121389
Citing:
DB Citing
Scopus 2
OpenAlex 1
Altmetrics: