The identification problem for a nonsingular system of ordinary differential equations with fast and slow variables Научная публикация
Журнал |
Математические заметки СВФУ (Mathematical Notes of NEFU)
ISSN: 2411-9326 , E-ISSN: 2587-876X |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 28, Номер: 2, Страницы: 3-15 Страниц : 13 DOI: 10.25587/SVFU.2021.58.21.001 | ||||
Ключевые слова | Chemical kinetics; Contraction mapping principle; Inverse problem; Ordinary differential equation; Small parameter | ||||
Авторы |
|
||||
Организации |
|
Реферат:
An iteration algorithm of finding an approximate solution to an inverse problem in the nonsingular case (ε ≠ 0) is proposed. On each iteration step, the algorithm combines the inverse problem solution for the investigated case ε ≠ 0 and the direct problem solution which is reduced to the proof of existence and uniqueness theorem in case ε ≠ 0. We prove a theorem about the convergence of the proposed algorithm; the proof is based on the contraction mapping principle.
Библиографическая ссылка:
Kononenko L.I.
The identification problem for a nonsingular system of ordinary differential equations with fast and slow variables
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. Т.28. №2. С.3-15. DOI: 10.25587/SVFU.2021.58.21.001 Scopus OpenAlex
The identification problem for a nonsingular system of ordinary differential equations with fast and slow variables
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. Т.28. №2. С.3-15. DOI: 10.25587/SVFU.2021.58.21.001 Scopus OpenAlex
Идентификаторы БД:
Scopus: | 2-s2.0-85112242482 |
OpenAlex: | W4324121389 |