ON RADIUS AND TYPICAL PROPERTIES OF n-VERTEX GRAPHS OF GIVEN DIAMETER Научная публикация
Журнал |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
---|---|---|---|
Вых. Данные | Год: 2021, Том: 18, Номер: 1, Страницы: 345-357 Страниц : 13 DOI: 10.33048/semi.2021.18.024 | ||
Ключевые слова | graph, diameter, diametral vertices, radius, metric ball and sphere, typical graphs, almost all graphs | ||
Авторы |
|
||
Организации |
|
Реферат:
A property of graphs from a class under consideration is typical if almost all graphs from this class have the given property. Typical properties of the class of n-vertex graphs of a fixed diameter k are studied. A family of embedded classes of typical n-vertex graphs of a given diameter k ≥ 3, which possess a number of established metric properties, is constructed. Based on the typical properties of metric balls contained in the graph, the radius of almost all n-vertex graphs from the investigated classes is found. It is proved that for every fixed integer k ≥ 3 almost all n-vertex graphs of diameter k have radius (Formula presented), while the radius of almost all graphs of diameter k =1, 2 is equal to the diameter. All found typical properties of n-vertex graphs of a fixed diameter k ≥ 2 are also typical for connected graphs of diameter at least k, as well as for graphs (not necessarily connected) containing the shortest path of length at least k.
Библиографическая ссылка:
Fedoryaeva T.I.
ON RADIUS AND TYPICAL PROPERTIES OF n-VERTEX GRAPHS OF GIVEN DIAMETER
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2021. V.18. N1. P.345-357. DOI: 10.33048/semi.2021.18.024 WOS Scopus РИНЦ MathNet OpenAlex
ON RADIUS AND TYPICAL PROPERTIES OF n-VERTEX GRAPHS OF GIVEN DIAMETER
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2021. V.18. N1. P.345-357. DOI: 10.33048/semi.2021.18.024 WOS Scopus РИНЦ MathNet OpenAlex
Даты:
Поступила в редакцию: | 25 янв. 2021 г. |
Опубликована online: | 2 апр. 2021 г. |
Идентификаторы БД:
Web of science: | WOS:000641267200001 |
Scopus: | 2-s2.0-85108805564 |
РИНЦ: | 46265216 |
MathNet: | rus/semr1365 |
OpenAlex: | W3199510654 |