Sciact
  • EN
  • RU

ON RADIUS AND TYPICAL PROPERTIES OF n-VERTEX GRAPHS OF GIVEN DIAMETER Научная публикация

Журнал Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Вых. Данные Год: 2021, Том: 18, Номер: 1, Страницы: 345-357 Страниц : 13 DOI: 10.33048/semi.2021.18.024
Ключевые слова graph, diameter, diametral vertices, radius, metric ball and sphere, typical graphs, almost all graphs
Авторы Fedoryaeva T.I. 1
Организации
1 Sobolev Institute of Mathematics, 4, Koptyuga ave, Novosibirsk, 630090, Russian Federation

Реферат: A property of graphs from a class under consideration is typical if almost all graphs from this class have the given property. Typical properties of the class of n-vertex graphs of a fixed diameter k are studied. A family of embedded classes of typical n-vertex graphs of a given diameter k ≥ 3, which possess a number of established metric properties, is constructed. Based on the typical properties of metric balls contained in the graph, the radius of almost all n-vertex graphs from the investigated classes is found. It is proved that for every fixed integer k ≥ 3 almost all n-vertex graphs of diameter k have radius (Formula presented), while the radius of almost all graphs of diameter k =1, 2 is equal to the diameter. All found typical properties of n-vertex graphs of a fixed diameter k ≥ 2 are also typical for connected graphs of diameter at least k, as well as for graphs (not necessarily connected) containing the shortest path of length at least k.
Библиографическая ссылка: Fedoryaeva T.I.
ON RADIUS AND TYPICAL PROPERTIES OF n-VERTEX GRAPHS OF GIVEN DIAMETER
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2021. V.18. N1. P.345-357. DOI: 10.33048/semi.2021.18.024 WOS Scopus РИНЦ MathNet OpenAlex
Даты:
Поступила в редакцию: 25 янв. 2021 г.
Опубликована online: 2 апр. 2021 г.
Идентификаторы БД:
Web of science: WOS:000641267200001
Scopus: 2-s2.0-85108805564
РИНЦ: 46265216
MathNet: rus/semr1365
OpenAlex: W3199510654
Цитирование в БД:
БД Цитирований
Scopus 3
Web of science 3
РИНЦ 2
OpenAlex 1
Альметрики: