A Polynomial 3/5-Approximate Algorithm for the Asymmetric Maximization Version of the 3-PSP Full article
Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797 |
||||
---|---|---|---|---|---|
Output data | Year: 2019, Volume: 13, Number: 2, Pages: 219-238 Pages count : 20 DOI: 10.1134/S1990478919020042 | ||||
Tags | approximation algorithm; guaranteed approximation ratio; Hamiltonian cycle; m-peripatetic salesman problem; traveling salesman problem | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
We present a first polynomial algorithm with guaranteed approximation ratio for the asymmetric maximization version of the asymmetric 3-Peripatetic Salesman Problem (3-APSP). This problem consists in finding the three edge-disjoint Hamiltonian circuits of maximal total weight in a complete weighted digraph. We prove that the algorithm has guaranteed approximation ratio 3/5 and cubic running-time. © 2019, Pleiades Publishing, Ltd.
Cite:
Glebov A.N.
, Toktokhoeva S.G.
A Polynomial 3/5-Approximate Algorithm for the Asymmetric Maximization Version of the 3-PSP
Journal of Applied and Industrial Mathematics. 2019. V.13. N2. P.219-238. DOI: 10.1134/S1990478919020042 Scopus OpenAlex
A Polynomial 3/5-Approximate Algorithm for the Asymmetric Maximization Version of the 3-PSP
Journal of Applied and Industrial Mathematics. 2019. V.13. N2. P.219-238. DOI: 10.1134/S1990478919020042 Scopus OpenAlex
Original:
Глебов А.Н.
, Токтохоева С.Г.
Полиномиальный 3/5-приближённый алгоритм для несимметричной задачи о трёх коммивояжёрах на максимум
Дискретный анализ и исследование операций. 2019. Т.26. №2. С.30-59.
Полиномиальный 3/5-приближённый алгоритм для несимметричной задачи о трёх коммивояжёрах на максимум
Дискретный анализ и исследование операций. 2019. Т.26. №2. С.30-59.
Identifiers:
Scopus: | 2-s2.0-85067404465 |
OpenAlex: | W2952489944 |