An inequality for the Steklov spectral zeta function of a planar domain Научная публикация
Журнал |
Journal of Spectral Theory
ISSN: 1664-039X , E-ISSN: 1664-0403 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2018, Том: 8, Номер: 1, Страницы: 271-296 Страниц : 26 DOI: 10.4171/JST/196 | ||||||
Ключевые слова | Dirichlet-to-Neumann operator; Inverse spectral problem; Steklov spectrum; Zeta function | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
We consider the zeta function Ω for the Dirichlet-to-Neumann operator of a simply connected planar domain Ωbounded by a smooth closed curve. We prove that, for a fixed real s satisfying jsj > 1 and fixed length L.@ Ω/ of the boundary curve, the zeta function Ω.s/ reaches its unique minimum when Ωis a disk. This result is obtained by studying the difference Ω(s)-2L.@ Ω/ 2 π R.s/,where R stands for the classicalRiemann zeta function. The difference turns out to be non-negative for real s satisfying jsj > 1. We prove some growth properties of the difference as s →±∞ Two analogs of these results are also provided.
Библиографическая ссылка:
Jollivet A.
, Sharafutdinov V.
An inequality for the Steklov spectral zeta function of a planar domain
Journal of Spectral Theory. 2018. V.8. N1. P.271-296. DOI: 10.4171/JST/196 WOS Scopus OpenAlex
An inequality for the Steklov spectral zeta function of a planar domain
Journal of Spectral Theory. 2018. V.8. N1. P.271-296. DOI: 10.4171/JST/196 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000424290700007 |
Scopus: | 2-s2.0-85042864545 |
OpenAlex: | W2793000411 |