Sciact
  • EN
  • RU

Large deviations and the rate of convergence in the Birkhoff ergodic theorem Full article

Journal Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876
Output data Year: 2013, Volume: 94, Number: 3-4, Pages: 524-531 Pages count : 8 DOI: 10.1134/s0001434613090228
Tags Anosov systems; billiards; large deviations; pointwise ergodic theorem; rates of convergence in ergodic theorems
Authors Kachurovskii A.G. 1 , Podvigin I.V. 2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Abstract: For bounded averaged functions, we prove the equivalence of the power-law and exponential rates of convergence in the Birkhoff individual ergodic theorem with the same asymptotics of the probability of large deviations in this theorem.
Cite: Kachurovskii A.G. , Podvigin I.V.
Large deviations and the rate of convergence in the Birkhoff ergodic theorem
Mathematical Notes. 2013. V.94. N3-4. P.524-531. DOI: 10.1134/s0001434613090228 WOS Scopus РИНЦ OpenAlex
Original: Качуровский А.Г. , Подвигин И.В.
Большие уклонения и скорости сходимости в эргодической теореме Биркгофа
Математические заметки. 2013. Т.94. №4. С.569-577. DOI: 10.4213/mzm9352 РИНЦ MathNet OpenAlex
Identifiers:
Web of science: WOS:000326052400022
Scopus: 2-s2.0-84886542166
Elibrary: 21885420
OpenAlex: W2133747049
Citing:
DB Citing
Web of science 7
Scopus 11
Elibrary 10
OpenAlex 11
Altmetrics: