Large deviations and the rate of convergence in the Birkhoff ergodic theorem Full article
Journal |
Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876 |
||||
---|---|---|---|---|---|
Output data | Year: 2013, Volume: 94, Number: 3-4, Pages: 524-531 Pages count : 8 DOI: 10.1134/s0001434613090228 | ||||
Tags | Anosov systems; billiards; large deviations; pointwise ergodic theorem; rates of convergence in ergodic theorems | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
For bounded averaged functions, we prove the equivalence of the power-law and exponential rates of convergence in the Birkhoff individual ergodic theorem with the same asymptotics of the probability of large deviations in this theorem.
Cite:
Kachurovskii A.G.
, Podvigin I.V.
Large deviations and the rate of convergence in the Birkhoff ergodic theorem
Mathematical Notes. 2013. V.94. N3-4. P.524-531. DOI: 10.1134/s0001434613090228 WOS Scopus РИНЦ OpenAlex
Large deviations and the rate of convergence in the Birkhoff ergodic theorem
Mathematical Notes. 2013. V.94. N3-4. P.524-531. DOI: 10.1134/s0001434613090228 WOS Scopus РИНЦ OpenAlex
Original:
Качуровский А.Г.
, Подвигин И.В.
Большие уклонения и скорости сходимости в эргодической теореме Биркгофа
Математические заметки. 2013. Т.94. №4. С.569-577. DOI: 10.4213/mzm9352 РИНЦ MathNet OpenAlex
Большие уклонения и скорости сходимости в эргодической теореме Биркгофа
Математические заметки. 2013. Т.94. №4. С.569-577. DOI: 10.4213/mzm9352 РИНЦ MathNet OpenAlex
Identifiers:
Web of science: | WOS:000326052400022 |
Scopus: | 2-s2.0-84886542166 |
Elibrary: | 21885420 |
OpenAlex: | W2133747049 |