Sciact
  • EN
  • RU

A Zero-One Law for the Rates of Convergence in the Birkhoff Ergodic Theorem with Continuous Time Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2022, Volume: 32, Number: 3, Pages: 186-196 Pages count : 11 DOI: 10.1134/s1055134422030026
Tags Birkhoff ergodic theorem; lattice of estimates; natural extension of an endomorphism; optimal estimates; rates of convergence in ergodic theorems
Authors Kachurovskii A.G. 1 , Podvigin I.V. 1,2 , Svishchev A.A. 2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics 0314-2019-0005

Abstract: We consider monotone pointwise estimates for the rates of convergence in the Birkhoff ergodic theorem with continuous time. For an ergodic semiflow in a Lebesgue space, we prove that such estimates hold either on a null measure set or on a full measure set. It is shown that monotone estimates that hold almost everywhere always exist. We study the lattice of such estimates and also consider some questions concerning their unimprovability.
Cite: Kachurovskii A.G. , Podvigin I.V. , Svishchev A.A.
A Zero-One Law for the Rates of Convergence in the Birkhoff Ergodic Theorem with Continuous Time
Siberian Advances in Mathematics. 2022. V.32. N3. P.186-196. DOI: 10.1134/s1055134422030026 Scopus РИНЦ OpenAlex
Original: Качуровский А.Г. , Подвигин И.В. , Свищёв A.A.
Закон нуля или единицы в эргодической теореме Биркгофа с непрерывным временем
Математические труды. 2021. Т.24. №2. С.65-80. DOI: 10.33048/mattrudy.2021.24.205 РИНЦ MathNet OpenAlex
Dates:
Published online: Sep 2, 2022
Identifiers:
Scopus: 2-s2.0-85137813083
Elibrary: 51300991
OpenAlex: W4294335362
Citing:
DB Citing
Scopus 3
OpenAlex 1
Elibrary 1
Altmetrics: