On optimal binary one-error-correcting codes of lengths $2^{m}-4$ and $2^{m}-3$ Full article
Journal |
IEEE Transactions on Information Theory
ISSN: 0018-9448 , E-ISSN: 1557-9654 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2011, Volume: 57, Number: 10, Pages: 6771-6779 Pages count : 9 DOI: 10.1109/tit.2011.2147758 | ||||||||||
Tags | Automorphism group, classification, clique, error-correcting code, MacWilliams transform | ||||||||||
Authors |
|
||||||||||
Affiliations |
|
Abstract:
Best and Brouwer proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2^m-4 and 2^m-3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computer-aided classification of the optimal binary one-error-correcting codes of lengths 12 and 13 possible; there are 237610 and 117823 such codes, respectively (with 27375 and 17513 inequivalent extensions). This completes the classification of optimal binary one-error-correcting codes for all lengths up to 15. Some properties of the classified codes are further investigated. Finally, it is proved that for any m≥4, there are optimal binary one-error-correcting codes of length 2^m-4 and 2^m-3 that cannot be lengthened to perfect codes of length 2^m-1.
Cite:
Krotov D.S.
, Östergård P.R.J.
, Pottonen O.
On optimal binary one-error-correcting codes of lengths $2^{m}-4$ and $2^{m}-3$
IEEE Transactions on Information Theory. 2011. V.57. N10. P.6771-6779. DOI: 10.1109/tit.2011.2147758 WOS Scopus РИНЦ OpenAlex
On optimal binary one-error-correcting codes of lengths $2^{m}-4$ and $2^{m}-3$
IEEE Transactions on Information Theory. 2011. V.57. N10. P.6771-6779. DOI: 10.1109/tit.2011.2147758 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Feb 18, 2011 |
Accepted: | Apr 7, 2011 |
Published online: | May 19, 2011 |
Identifiers:
Web of science: | WOS:000295739000031 |
Scopus: | 2-s2.0-80053959954 |
Elibrary: | 18009028 |
OpenAlex: | W3123893438 |