On optimal binary one-error-correcting codes of lengths $2^{m}-4$ and $2^{m}-3$ Научная публикация
Журнал |
IEEE Transactions on Information Theory
ISSN: 0018-9448 , E-ISSN: 1557-9654 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2011, Том: 57, Номер: 10, Страницы: 6771-6779 Страниц : 9 DOI: 10.1109/tit.2011.2147758 | ||||||||||
Ключевые слова | Automorphism group, classification, clique, error-correcting code, MacWilliams transform | ||||||||||
Авторы |
|
||||||||||
Организации |
|
Реферат:
Best and Brouwer proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2^m-4 and 2^m-3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computer-aided classification of the optimal binary one-error-correcting codes of lengths 12 and 13 possible; there are 237610 and 117823 such codes, respectively (with 27375 and 17513 inequivalent extensions). This completes the classification of optimal binary one-error-correcting codes for all lengths up to 15. Some properties of the classified codes are further investigated. Finally, it is proved that for any m≥4, there are optimal binary one-error-correcting codes of length 2^m-4 and 2^m-3 that cannot be lengthened to perfect codes of length 2^m-1.
Библиографическая ссылка:
Krotov D.S.
, Östergård P.R.J.
, Pottonen O.
On optimal binary one-error-correcting codes of lengths $2^{m}-4$ and $2^{m}-3$
IEEE Transactions on Information Theory. 2011. V.57. N10. P.6771-6779. DOI: 10.1109/tit.2011.2147758 WOS Scopus РИНЦ OpenAlex
On optimal binary one-error-correcting codes of lengths $2^{m}-4$ and $2^{m}-3$
IEEE Transactions on Information Theory. 2011. V.57. N10. P.6771-6779. DOI: 10.1109/tit.2011.2147758 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 18 февр. 2011 г. |
Принята к публикации: | 7 апр. 2011 г. |
Опубликована online: | 19 мая 2011 г. |
Идентификаторы БД:
Web of science: | WOS:000295739000031 |
Scopus: | 2-s2.0-80053959954 |
РИНЦ: | 18009028 |
OpenAlex: | W3123893438 |