Sciact
  • EN
  • RU

On optimal binary one-error-correcting codes of lengths $2^{m}-4$ and $2^{m}-3$ Научная публикация

Журнал IEEE Transactions on Information Theory
ISSN: 0018-9448 , E-ISSN: 1557-9654
Вых. Данные Год: 2011, Том: 57, Номер: 10, Страницы: 6771-6779 Страниц : 9 DOI: 10.1109/tit.2011.2147758
Ключевые слова Automorphism group, classification, clique, error-correcting code, MacWilliams transform
Авторы Krotov D.S. 1,2 , Östergård P.R.J. 3,4 , Pottonen O. 3,5
Организации
1 Sobolev Institute of Mathematics
2 Mechanics and Mathematics Department, Novosibirsk State University
3 Department of Communications and Networking, Aalto University School of Electrical Engineering, 00076 Aalto, Finland
4 Lehrstuhl für Mathematik II, Universität Bayreuth, 95440 Bayreuth, Germany
5 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

Реферат: Best and Brouwer proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2^m-4 and 2^m-3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computer-aided classification of the optimal binary one-error-correcting codes of lengths 12 and 13 possible; there are 237610 and 117823 such codes, respectively (with 27375 and 17513 inequivalent extensions). This completes the classification of optimal binary one-error-correcting codes for all lengths up to 15. Some properties of the classified codes are further investigated. Finally, it is proved that for any m≥4, there are optimal binary one-error-correcting codes of length 2^m-4 and 2^m-3 that cannot be lengthened to perfect codes of length 2^m-1.
Библиографическая ссылка: Krotov D.S. , Östergård P.R.J. , Pottonen O.
On optimal binary one-error-correcting codes of lengths $2^{m}-4$ and $2^{m}-3$
IEEE Transactions on Information Theory. 2011. V.57. N10. P.6771-6779. DOI: 10.1109/tit.2011.2147758 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 18 февр. 2011 г.
Принята к публикации: 7 апр. 2011 г.
Опубликована online: 19 мая 2011 г.
Идентификаторы БД:
Web of science: WOS:000295739000031
Scopus: 2-s2.0-80053959954
РИНЦ: 18009028
OpenAlex: W3123893438
Цитирование в БД:
БД Цитирований
Web of science 8
Scopus 11
OpenAlex 10
Альметрики: