Sciact
  • EN
  • RU

Almost all about light neighborhoods of 5-vertices in 3-polytopes with minimum degree 5 Научная публикация

Журнал Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Вых. Данные Год: 2022, Том: 345, Номер: 2, Страницы: 112678 Страниц : 9 DOI: 10.1016/j.disc.2021.112678
Ключевые слова 3-polytope; 5-star; Neighborhood; Structure properties; Weight
Авторы Borodin O.V. 1 , Ivanova A.O. 1
Организации
1 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

Информация о финансировании (1)

1 Российский научный фонд 16-11-10054-П

Реферат: Let w be the minimum integer W with the property that every 3-polytope with minimum degree 5 and maximum degree has a vertex of degree 5 with the degreesum (weight) of all vertices in its neighborhood at most W. Trivially, w5 = 30 and w6 = 35. In 1940, Lebesgue proved w ≤ + 31 for all ≥ 5 and w ≤ + 27 for ≥ 41. In 1998, the first Lebesgue’s result was improved by Borodin and Woodall to w ≤ +30. This bound is sharp for = 7 due to Borodin (1992) and Jendrol’ and Madaras (1996), = 9 due to Borodin and Ivanova (2013), = 10 due to Jendrol’ and Madaras (1996), and = 12 due to Borodin and Woodall (1998). As for the second Lebesgue’s bound, Borodin, Ivanova, and Jensen (2014) proved that w = + 27 for ≥ 28, but w20 ≥ 48; the former fact was extended by Borodin and Ivanova (2016) to w = + 27 for ≥ 24. In 2017, we proved w ≤ + 29 whenever ≥ 13, and showed by constructions that w8 = 38, w11 = 41, and w13 = 42. Li, Rao, and Wang (2019) proved w ≤ + 28 for ≥ 16. The purpose of this paper is to prove that w = + 28 whenever 14 ≤ ≤ 20. Thus w remains unknown only for 21 ≤ ≤ 23.
Библиографическая ссылка: Borodin O.V. , Ivanova A.O.
Almost all about light neighborhoods of 5-vertices in 3-polytopes with minimum degree 5
Discrete Mathematics. 2022. V.345. N2. P.112678. DOI: 10.1016/j.disc.2021.112678 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 4 окт. 2021 г.
Принята к публикации: 5 окт. 2021 г.
Опубликована online: 18 окт. 2021 г.
Идентификаторы БД:
Web of science: WOS:000710162800002
Scopus: 2-s2.0-85117236787
РИНЦ: 47513820
OpenAlex: W3206986005
Цитирование в БД: Пока нет цитирований
Альметрики: