Asymptotic approximation for the number of $n$-vertex graphs of given diameter Научная публикация
Журнал |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2017, Том: 11, Номер: 2, Страницы: 204-214 Страниц : 11 DOI: 10.1134/S1990478917020065 | ||||
Ключевые слова | graph, labeled graph, shortest path, graph diameter, number of graphs, typical graph | ||||
Авторы |
|
||||
Организации |
|
Реферат:
We prove that, for fixed k ≥ 3, the following classes of labeled n-vertex graphs are asymptotically equicardinal: graphs of diameter k, connected graphs of diameter at least k, and (not necessarily connected) graphs with a shortest path of length at least k. An asymptotically exact approximation of the number of such n-vertex graphs is obtained, and an explicit error estimate in the approximation is found. Thus, the estimates are improved for the asymptotic approximation of the number of n-vertex graphs of fixed diameter k earlier obtained by Füredi and Kim. It is shown that almost all graphs of diameter k have a unique pair of diametrical vertices but almost all graphs of diameter 2 have more than one pair of such vertices.
Библиографическая ссылка:
Fedoryaeva T.I.
Asymptotic approximation for the number of $n$-vertex graphs of given diameter
Journal of Applied and Industrial Mathematics. 2017. V.11. N2. P.204-214. DOI: 10.1134/S1990478917020065 Scopus РИНЦ MathNet OpenAlex
Asymptotic approximation for the number of $n$-vertex graphs of given diameter
Journal of Applied and Industrial Mathematics. 2017. V.11. N2. P.204-214. DOI: 10.1134/S1990478917020065 Scopus РИНЦ MathNet OpenAlex
Оригинальная:
Федоряева Т.И.
Асимптотическое приближение числа $n$-вершинных графов заданного диаметра
Дискретный анализ и исследование операций. 2017. Т.24. №2. 68-86 :1-19. DOI: 10.17377/daio.2017.24.534 РИНЦ MathNet
Асимптотическое приближение числа $n$-вершинных графов заданного диаметра
Дискретный анализ и исследование операций. 2017. Т.24. №2. 68-86 :1-19. DOI: 10.17377/daio.2017.24.534 РИНЦ MathNet
Даты:
Поступила в редакцию: | 29 мар. 2016 г. |
Опубликована в печати: | 25 мая 2017 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-85019662822 |
РИНЦ: | 31036341 |
MathNet: | eng/da870 |
OpenAlex: | W2617490678 |