Sciact
  • EN
  • RU

On the number of bent functions from iterative constructions: lower bounds and hypotheses Научная публикация

Журнал Advances in Mathematics of Communications
ISSN: 1930-5346 , E-ISSN: 1930-5338
Вых. Данные Год: 2011, Том: 5, Номер: 4, Страницы: 609-621 Страниц : 13 DOI: 10.3934/amc.2011.5.609
Ключевые слова Asymptotic value; Bent function; Bent sum decomposition; Iterative construction; Monte-Carlo methods
Авторы Tokareva Natalia 1
Организации
1 Sobolev Intstitute of mathematics

Реферат: In the paper we study lower bounds on the number of bent func- tions that can be obtained by iterative constructions, namely by the construc- tion proposed by A. Canteaut and P. Charpin in 2003. The number of bent iterative functions is expressed in terms of sizes of nite sets and it is shown that evaluation of this number is closely connected to the problem of decom- posing Boolean function into sum of two bent functions. A new lower bound for the number of bent iterative functions that is supposed to be asymptotical- ly tight is given. Applying Monte{Carlo methods the number of bent iterative functions in 8 variables is counted. Based on the performed calculations sever- al hypotheses on the asymptotic value of the number of all bent functions are formulated.
Библиографическая ссылка: Tokareva N.
On the number of bent functions from iterative constructions: lower bounds and hypotheses
Advances in Mathematics of Communications. 2011. V.5. N4. P.609-621. DOI: 10.3934/amc.2011.5.609 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000296590400004
Scopus: 2-s2.0-84975247315
OpenAlex: W2067550262
Цитирование в БД:
БД Цитирований
Scopus 39
OpenAlex 49
Web of science 34
Альметрики: