Duality between bent functions and affine functions Научная публикация
Журнал |
Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X |
||
---|---|---|---|
Вых. Данные | Год: 2011, Том: 312, Номер: 3, Страницы: 666-670 Страниц : 5 DOI: 10.1016/j.disc.2011.06.017 | ||
Ключевые слова | Affine function; Bent function; Duality | ||
Авторы |
|
||
Организации |
|
Реферат:
A Boolean function in an even number of variables is called bent if it is at the maximal possible Hamming distance from the class of all affine Boolean functions. We prove that there is a duality between bent functions and affine functions. Namely, we show that affine function can be defined as a Boolean function that is at the maximal possible distance from the set of all bent functions.
Библиографическая ссылка:
Tokareva N.
Duality between bent functions and affine functions
Discrete Mathematics. 2011. V.312. N3. P.666-670. DOI: 10.1016/j.disc.2011.06.017 WOS Scopus OpenAlex
Duality between bent functions and affine functions
Discrete Mathematics. 2011. V.312. N3. P.666-670. DOI: 10.1016/j.disc.2011.06.017 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000299148300025 |
Scopus: | 2-s2.0-81955161174 |
OpenAlex: | W2024339358 |