Sciact
  • EN
  • RU

Simple finite-dimensional double algebras Full article

Journal Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Output data Year: 2018, Volume: 500, Pages: 425-438 Pages count : 14 DOI: 10.1016/j.jalgebra.2017.04.020
Tags Averaging operator; Double Lie algebra; Rota–Baxter operator
Authors Goncharov M.E. 1 , Kolesnikov P.S. 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: A double algebra is a linear space V equipped with linear map V ⊗ V → V ⊗ V . Additional conditions on this map lead to the notions of Lie and associative double algebras. We prove that simple finite-dimensional Lie double algebras do not exist over an arbitrary field, and all simple finite- dimensional associative double algebras over an algebraically closed field are trivial. Over an arbitrary field, every simple finite-dimensional associative double algebra is commutative. A double algebra structure on a finite-dimensional space V is naturally described by a linear operator R on the algebra End V of linear transformations of V . Double Lie algebras correspond in this sense to skew-symmetric Rota–Baxter operators, double associative algebra structures – to (left) averaging operators.
Cite: Goncharov M.E. , Kolesnikov P.S.
Simple finite-dimensional double algebras
Journal of Algebra. 2018. V.500. P.425-438. DOI: 10.1016/j.jalgebra.2017.04.020 WOS Scopus OpenAlex
Dates:
Submitted: Sep 13, 2016
Published online: May 3, 2017
Identifiers:
Web of science: WOS:000427548000021
Scopus: 2-s2.0-85044260493
OpenAlex: W2554412622
Citing:
DB Citing
Scopus 27
OpenAlex 27
Web of science 23
Altmetrics: