Sciact
  • EN
  • RU

Simple finite-dimensional double algebras Научная публикация

Журнал Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Вых. Данные Год: 2018, Том: 500, Страницы: 425-438 Страниц : 14 DOI: 10.1016/j.jalgebra.2017.04.020
Ключевые слова Averaging operator; Double Lie algebra; Rota–Baxter operator
Авторы Goncharov M.E. 1 , Kolesnikov P.S. 1
Организации
1 Sobolev Institute of Mathematics

Реферат: A double algebra is a linear space V equipped with linear map V ⊗ V → V ⊗ V . Additional conditions on this map lead to the notions of Lie and associative double algebras. We prove that simple finite-dimensional Lie double algebras do not exist over an arbitrary field, and all simple finite- dimensional associative double algebras over an algebraically closed field are trivial. Over an arbitrary field, every simple finite-dimensional associative double algebra is commutative. A double algebra structure on a finite-dimensional space V is naturally described by a linear operator R on the algebra End V of linear transformations of V . Double Lie algebras correspond in this sense to skew-symmetric Rota–Baxter operators, double associative algebra structures – to (left) averaging operators.
Библиографическая ссылка: Goncharov M.E. , Kolesnikov P.S.
Simple finite-dimensional double algebras
Journal of Algebra. 2018. V.500. P.425-438. DOI: 10.1016/j.jalgebra.2017.04.020 WOS Scopus OpenAlex
Даты:
Поступила в редакцию: 13 сент. 2016 г.
Опубликована online: 3 мая 2017 г.
Идентификаторы БД:
Web of science: WOS:000427548000021
Scopus: 2-s2.0-85044260493
OpenAlex: W2554412622
Цитирование в БД:
БД Цитирований
Scopus 24
OpenAlex 26
Web of science 23
Альметрики: