Sciact
  • EN
  • RU

On decomposition of a Boolean function into sum of bent functions Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2014, Volume: 11, Pages: 745-751 Pages count : 7
Authors N. N. Tokareva N.N. 1,2
Affiliations
1 Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
2 Novosibirsk State University, Pirogova st., 2, 630090, Novosibirsk, Russia

Abstract: It is proved that every Boolean function in n variables of a constant degree d, where d ≤ n/2, n is even, can be represented as the sum of constant number of bent functions in n variables. It is shown that any cubic Boolean function in 8 variables is the sum of not more than 4 bent functions in 8 variables.
Cite: N. N. Tokareva N.N.
On decomposition of a Boolean function into sum of bent functions
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2014. V.11. P.745-751.
Identifiers: No identifiers
Citing: Пока нет цитирований