Sciact
  • EN
  • RU

An overview of the Eight International Olympiad in cryptography "Non-Stop University CRYPTO" Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 1, Pages: 9-37 Pages count : 29 DOI: 10.33048/semi.2022.19.023
Tags Ciphers; Cryptography; Electronic voting; Masking; Nsucrypto; Olympiad; Orthogonal arrays; Permutations; Quantum error correction; S-boolean sharing
Authors Gorodilova Anastasiya Aleksandrovna 1 , Tokareva Natalia Nikolaevna 1 , Agievich S.V. 2 , Beterov I.I. 3,4 , Beyne T. 5 , Budaghyan L. 6 , Carlet C. 6 , Dhooghe S. 5 , Идрисова В.А. 1 , Kolomeets Nikolai Aleksandrovich 1 , Kutsenko Aleksandr Vladimirovich 1 , Малыгина Е.С. 7 , Mouha N. 8 , Pudovkina M.A. 9 , Sica F. 10 , Udovenko A.N. 11
Affiliations
1 Sobolev Institute of Mathematics
2 Belarusian State University
3 Rzhanov Institute of Semiconductor Physics
4 Novosibirsk State University
5 IMEC-COSIC, ESAT
6 University of Bergen
7 Immanuel Kant Baltic Federal University
8 Strativia
9 National Research Nuclear University MEPhI
10 Nazarbayev University
11 CryptoExperts

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0018

Abstract: Non-Stop University CRYPTO is the International Olympiad in Cryptography that was held for the eight time in 2021. Hundreds of university and school students, professionals from 33 countries worked on mathematical problems in cryptography during a week. The aim of the Olympiad is to attract attention to curious and even open scientific problems of modern cryptography. In this paper, problems and their solutions of the Olympiad'2021 are presented. We consider 19 problems of varying difficulty and topics: ciphers, online machines, passwords, binary strings, permutations, quantum circuits, historical ciphers, elliptic curves, masking, implementation on a chip, etc. We discuss several open problems on quantum error correction, finding special permutations and s-Boolean sharing of a function, obtaining new bounds on the distance to affine vectorial functions.
Cite: Gorodilova A.A. , Tokareva N.N. , Agievich S.V. , Beterov I.I. , Beyne T. , Budaghyan L. , Carlet C. , Dhooghe S. , Идрисова В.А. , Kolomeets N.A. , Kutsenko A.V. , Малыгина Е.С. , Mouha N. , Pudovkina M.A. , Sica F. , Udovenko A.N.
An overview of the Eight International Olympiad in cryptography "Non-Stop University CRYPTO"
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.9-37. DOI: 10.33048/semi.2022.19.023 Scopus РИНЦ
Dates:
Submitted: May 6, 2022
Published online: May 26, 2022
Identifiers:
Scopus: 2-s2.0-85132592944
Elibrary: 49384647
Citing:
DB Citing
Scopus 6
Elibrary 2
Altmetrics: