Vaught’s conjecture for quite o-minimal theories Научная публикация
| Журнал |
Annals of Pure and Applied Logic
ISSN: 0168-0072 |
||||||||
|---|---|---|---|---|---|---|---|---|---|
| Вых. Данные | Год: 2017, Том: 168, Номер: 1, Страницы: 129-149 Страниц : 21 DOI: 10.1016/j.apal.2016.09.002 | ||||||||
| Ключевые слова | Weak o-minimality Quite o-minimal theory Vaught’s conjecture Countable model Binary theory | ||||||||
| Авторы |
|
||||||||
| Организации |
|
Реферат:
We study Vaught’s problem for quite o-minimal theories. Quite o-minimal theories form a subclass of the class of weakly o-minimal theories preserving a series of properties of o-minimal theories. We investigate quite o-minimal theories having fewer than 2^ω countable models and prove that the Exchange Principle for algebraic closure holds in any model of such a theory and also we prove binarity of these theories. The main result of the paper is that any quite o-minimal theory has either 2ωcountable models or 6^a3^b countable models, where aand bare natural numbers.
Библиографическая ссылка:
Кулпешов Б.Ш.
, Sudoplatov S.V.
Vaught’s conjecture for quite o-minimal theories
Annals of Pure and Applied Logic. 2017. V.168. N1. P.129-149. DOI: 10.1016/j.apal.2016.09.002 WOS Scopus РИНЦ OpenAlex
Vaught’s conjecture for quite o-minimal theories
Annals of Pure and Applied Logic. 2017. V.168. N1. P.129-149. DOI: 10.1016/j.apal.2016.09.002 WOS Scopus РИНЦ OpenAlex
Даты:
| Поступила в редакцию: | 15 нояб. 2015 г. |
| Принята к публикации: | 11 сент. 2016 г. |
| Опубликована в печати: | 13 сент. 2016 г. |
| Опубликована online: | 1 янв. 2017 г. |
Идентификаторы БД:
| Web of science: | WOS:000387529200007 |
| Scopus: | 2-s2.0-84994784113 |
| РИНЦ: | 27844043 |
| OpenAlex: | W2519010381 |