Sciact
  • EN
  • RU

The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in $$\mathbb R^d$$ does not always remain unaltered during the flex Full article

Journal Journal of Geometry
ISSN: 0047-2468 , E-ISSN: 1420-8997
Output data Year: 2020, Volume: 111, Number: 2, Article number : 32, Pages count : 14 DOI: 10.1007/s00022-020-00541-8
Tags Asymptotic behavior of eigenvalues; Dihedral angle; Dirichlet eigenvalue; Flexible polyhedron; Laplace operator; Neumann eigenvalue; Volume; Weyl asymptotic formula for the Laplacian; Weyl’s law
Authors Alexandrov Victor 1,2
Affiliations
1 Sobolev Institue of Mathematics
2 Novosibirsk State University
Cite: Alexandrov V.
The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in $$\mathbb R^d$$ does not always remain unaltered during the flex
Journal of Geometry. 2020. V.111. N2. 32 :1-14. DOI: 10.1007/s00022-020-00541-8 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000537725700001
Scopus: 2-s2.0-85086043829
OpenAlex: W2890297368
Citing: Пока нет цитирований
Altmetrics: