The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in $$\mathbb R^d$$ does not always remain unaltered during the flex Full article
Journal |
Journal of Geometry
ISSN: 0047-2468 , E-ISSN: 1420-8997 |
||||
---|---|---|---|---|---|
Output data | Year: 2020, Volume: 111, Number: 2, Article number : 32, Pages count : 14 DOI: 10.1007/s00022-020-00541-8 | ||||
Tags | Asymptotic behavior of eigenvalues; Dihedral angle; Dirichlet eigenvalue; Flexible polyhedron; Laplace operator; Neumann eigenvalue; Volume; Weyl asymptotic formula for the Laplacian; Weyl’s law | ||||
Authors |
|
||||
Affiliations |
|
Cite:
Alexandrov V.
The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in $$\mathbb R^d$$ does not always remain unaltered during the flex
Journal of Geometry. 2020. V.111. N2. 32 :1-14. DOI: 10.1007/s00022-020-00541-8 WOS Scopus OpenAlex
The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in $$\mathbb R^d$$ does not always remain unaltered during the flex
Journal of Geometry. 2020. V.111. N2. 32 :1-14. DOI: 10.1007/s00022-020-00541-8 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000537725700001 |
Scopus: | 2-s2.0-85086043829 |
OpenAlex: | W2890297368 |
Citing:
Пока нет цитирований