The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in $$\mathbb R^d$$ does not always remain unaltered during the flex Научная публикация
Журнал |
Journal of Geometry
ISSN: 0047-2468 , E-ISSN: 1420-8997 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2020, Том: 111, Номер: 2, Номер статьи : 32, Страниц : 14 DOI: 10.1007/s00022-020-00541-8 | ||||
Ключевые слова | Asymptotic behavior of eigenvalues; Dihedral angle; Dirichlet eigenvalue; Flexible polyhedron; Laplace operator; Neumann eigenvalue; Volume; Weyl asymptotic formula for the Laplacian; Weyl’s law | ||||
Авторы |
|
||||
Организации |
|
Библиографическая ссылка:
Alexandrov V.
The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in $$\mathbb R^d$$ does not always remain unaltered during the flex
Journal of Geometry. 2020. V.111. N2. 32 :1-14. DOI: 10.1007/s00022-020-00541-8 WOS Scopus OpenAlex
The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in $$\mathbb R^d$$ does not always remain unaltered during the flex
Journal of Geometry. 2020. V.111. N2. 32 :1-14. DOI: 10.1007/s00022-020-00541-8 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000537725700001 |
Scopus: | 2-s2.0-85086043829 |
OpenAlex: | W2890297368 |
Цитирование в БД:
Пока нет цитирований