Representation of ℤ4-linear Preparata codes using vector fields Научная публикация
Журнал |
Problems of Information Transmission
ISSN: 0032-9460 , E-ISSN: 1608-3253 |
||
---|---|---|---|
Вых. Данные | Год: 2005, Том: 41, Номер: 2, Страницы: 113-124 Страниц : 12 DOI: 10.1007/s11122-005-0016-4 | ||
Авторы |
|
||
Организации |
|
Реферат:
A binary code is called ℤ4-linear if its quaternary Gray map preimage is linear. We show that the set of all quaternary linear Preparata codes of length n = 2m, m odd, m ≥ 3, is nothing more than the set of codes of the form Hλ,ψ + M with Hλ,ψ = {y + Tλ(y) + Sψ(y) y ∈ Hn}, M = 2Hn, where Tλ(·) and Sψ(·) are vector fields of a special form defined over the binary extended linear Hamming code Hn of length n. An upper bound on the number of nonequivalent quaternary linear Preparata codes of length n is obtained, namely, 2nlog2n. A representation for binary Preparata codes contained in perfect Vasil'ev codes is suggested.
Библиографическая ссылка:
Токарева Н.Н.
Representation of ℤ4-linear Preparata codes using vector fields
Problems of Information Transmission. 2005. Т.41. №2. С.113-124. DOI: 10.1007/s11122-005-0016-4 Scopus OpenAlex
Representation of ℤ4-linear Preparata codes using vector fields
Problems of Information Transmission. 2005. Т.41. №2. С.113-124. DOI: 10.1007/s11122-005-0016-4 Scopus OpenAlex
Идентификаторы БД:
Scopus: | 2-s2.0-23044509592 |
OpenAlex: | W2155774524 |