Sciact
  • EN
  • RU

Distance regularity of Kerdock codes Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2008, Volume: 49, Number: 3, Pages: 539-548 Pages count : 10 DOI: 10.1007/s11202-008-0051-7
Tags Association scheme; Bent function; Discrete Fourier transform; Distance regular code; Distance regular graph; Kerdock code; Reed-Muller code
Authors Solov’eva F.I. 1 , Tokareva N.N. 1
Affiliations
1 Sobolev institute of mathematics

Abstract: A code is called distance regular, if for every two codewords x, y and integers i, j the number of codewords z such that d(x, z) = i and d(y, z) = j, with d the Hamming distance, does not depend on the choice of x, y and depends only on d(x, y) and i, j. Using some properties of the discrete Fourier transform we give a new combinatorial proof of the distance regularity of an arbitrary Kerdock code. We also calculate the parameters of the distance regularity of a Kerdock code.
Cite: Solov’eva F.I. , Tokareva N.N.
Distance regularity of Kerdock codes
Siberian Mathematical Journal. 2008. V.49. N3. P.539-548. DOI: 10.1007/s11202-008-0051-7 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000256329000015
Scopus: 2-s2.0-44349088189
OpenAlex: W2023135058
Citing:
DB Citing
Scopus 1
OpenAlex 1
Web of science 1
Altmetrics: