On function spaces Тезисы доклада
Конференция |
Международная конференция «Мальцевские чтения» 16-19 нояб. 2020 , Новосибирск |
||
---|---|---|---|
Сборник | Международная конференция МАЛЬЦЕВСКИЕ ЧТЕНИЯ 16–20 ноября 2020 г. Тезисы докладов Сборник, 2020. |
||
Вых. Данные | Год: 2020, Страницы: 244 Страниц : 1 | ||
Авторы |
|
||
Организации |
|
Реферат:
Consider the following properties of topological T0-spaces:
(1) to be a d-space;
(2) to be a topological join-semilattice;
(3) to be a sober space;
(4) to be an essentially complete space;
(5) to be a [restricted] injective space;
(6) to be a [sober] ∆-space.
Let P denote one of the properties (1)–(4). Then a T0-space Y has P if and only if C(X, Y)
has P for some (and therefore for each) T0-space X. Let Q denote one of the properties
(5)–(6). Then a T0-space Y has Q if and only if C(X, Y) has Q for some (and therefore
for each) α
∗
-space X. A T0-space Y is a [sober] ∆-space if and only if C(X, Y) is a [sober]
∆-space for some (and therefore for each) ∆-space X.
Both authors were supported by the fundamental research program of the Siberian
Branch of the Russian Academy of Sciences I.1.1, project 0314-2019-0003, and by RFBF,
project 18-01-00624a.
References
[1] Ershov Yu. L. Topology for Discrete Mathematics. SB RAS Publishing House, Novosibirsk, 2020.
[2] Ershov Yu. L., Schwidefsky M. V. On function spaces // Siberian Electronic Mathematical Reports.
2020. Vol. 17. P. 999–1008. Available at http://semr.math.nsc.ru/v17/p999-1008.pdf
Библиографическая ссылка:
Ershov Y.L.
, Schwidefsky M.V.
On function spaces
В сборнике Международная конференция МАЛЬЦЕВСКИЕ ЧТЕНИЯ 16–20 ноября 2020 г. Тезисы докладов. 2020. – C.244.
On function spaces
В сборнике Международная конференция МАЛЬЦЕВСКИЕ ЧТЕНИЯ 16–20 ноября 2020 г. Тезисы докладов. 2020. – C.244.
Идентификаторы БД:
Нет идентификаторов
Цитирование в БД:
Пока нет цитирований