Sciact
  • EN
  • RU

On the pronormality of subgroups of odd index in some direct products of finite groups Научная публикация

Журнал Journal of Algebra and its Applications
ISSN: 0219-4988
Вых. Данные Год: 2023, Том: 22, Номер: 4, Номер статьи : 2150001, Страниц : 20 DOI: 10.1142/S0219498823500834
Ключевые слова direct product; Finite group; odd index; pronormal subgroup; simple symplectic group; wreath product
Авторы Maslova N.V. 3,4 , Revin D.O. 1,2,3
Организации
1 Krasovskii Institute of Mathematics and Mechanics UB RAS
2 Ural Federal University
3 Sobolev Institute of Mathematics SB RAS
4 Novosibirsk State University

Информация о финансировании (1)

1 Российский научный фонд 19-71-10067

Реферат: A subgroup H of a group G is said to be pronormal in G if H and Hg are conjugate in (H,Hg) for each g ∈ G. Some problems in Finite Group Theory, Combinatorics and Permutation Group Theory were solved in terms of pronormality, therefore, the question of pronormality of a given subgroup in a given group is of interest. Subgroups of odd index in finite groups satisfy a native necessary condition of pronormality. In this paper, we continue investigations on pronormality of subgroups of odd index and consider the pronormality question for subgroups of odd index in some direct products of finite groups. In particular, in this paper, we prove that the subgroups of odd index are pronormal in the direct product G of finite simple symplectic groups over fields of odd characteristics if and only if the subgroups of odd index are pronormal in each direct factor of G. Moreover, deciding the pronormality of a given subgroup of odd index in the direct product of simple symplectic groups over fields of odd characteristics is reducible to deciding the pronormality of some subgroup H of odd index in a subgroup of Qt i=1 Z3 Symni , where each Symni acts naturally on {1, . . . ,ni}, such that H projects onto Qt i=1 Symni . Thus, in this paper, we obtain a criterion of pronormality of a subgroup H of odd index in a subgroup of Qt i=1 Zpi Symni , where each pi is a prime and each Symni acts naturally on {1, . . . , ni}, such that H projects onto Qt i=1 Symni .
Библиографическая ссылка: Maslova N.V. , Revin D.O.
On the pronormality of subgroups of odd index in some direct products of finite groups
Journal of Algebra and its Applications. 2023. V.22. N4. 2150001 :1-20. DOI: 10.1142/S0219498823500834 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 21 июн. 2020 г.
Принята к публикации: 8 окт. 2020 г.
Опубликована online: 9 февр. 2022 г.
Опубликована в печати: 3 мар. 2023 г.
Идентификаторы БД:
Web of science: WOS:000849400900001
Scopus: 2-s2.0-85124829305
РИНЦ: 48150826
OpenAlex: W3012850095
Цитирование в БД:
БД Цитирований
Scopus 2
РИНЦ 2
Web of science 2
OpenAlex 1
Альметрики: