Sciact
  • EN
  • RU

Reconstruction of eigenfunctions of a q-ary n-dimensional hypercube Full article

Journal Problems of Information Transmission
ISSN: 0032-9460 , E-ISSN: 1608-3253
Output data Year: 2015, Volume: 51, Number: 3, Pages: 231-239 Pages count : 9 DOI: 10.1134/S0032946015030035
Authors Vasilʹeva Anastasiya Yurʹevna 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: We prove that values of an arbitrary eigenfunction of a q-ary n-dimensional hypercube can be uniquely reconstructed at all vertices inside a ball if its values on the corresponding sphere are known; we give sufficient conditions for such reconstruction in terms of the eigenvalue and the ball radius. We show that in the case where values of an eigenfunction are given on a sphere of radius equal to the corresponding eigenvalue, all values of the eigenfunction can be reconstructed; similarly to the previous case, sufficient numerical conditions are presented.
Cite: Vasilʹeva A.Y.
Reconstruction of eigenfunctions of a q-ary n-dimensional hypercube
Problems of Information Transmission. 2015. V.51. N3. P.231-239. DOI: 10.1134/S0032946015030035 WOS Scopus РИНЦ OpenAlex
Original: Васильева А.Ю.
Восстановление собственных функций q-ичного n-мерного гиперкуба
Проблемы передачи информации. 2015. Т.51. №3. С.31-40. РИНЦ
Identifiers:
Web of science: WOS:000363254900003
Scopus: 2-s2.0-84944460464
Elibrary: 24961868
OpenAlex: W2886645397
Citing:
DB Citing
Web of science 3
Scopus 5
Elibrary 5
OpenAlex 4
Altmetrics: