Sciact
  • EN
  • RU

On shifting sets in the binary hypercube Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2009, Volume: 3, Number: 2, Pages: 290-296 Pages count : 7 DOI: 10.1134/s199047890902015x
Authors Vasil'ev Yu.L. 1 , Avgustinovich S.V. 1 , Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia

Abstract: If two codes with distance 3 have some coincident neighborhoods then each of them is called a shifting set. In the binary $(4k+3)$-dimensional hypercube, there exists a shifting set of power $2·6^k$ which can be neither divided into shifting sets of less size nor represented as a natural dilatation of a shifting set of less size.
Cite: Vasil'ev Y.L. , Avgustinovich S.V. , Krotov D.S.
On shifting sets in the binary hypercube
Journal of Applied and Industrial Mathematics. 2009. V.3. N2. P.290-296. DOI: 10.1134/s199047890902015x Scopus РИНЦ OpenAlex
Original: Васильев Ю.Л. , Августинович С.В. , Кротов Д.С.
О подвижных множествах в двоичном гиперкубе
Дискретный анализ и исследование операций. 2008. Т.15. №3. С.11-21. РИНЦ
Dates:
Submitted: Dec 27, 2007
Published online: May 24, 2009
Identifiers:
Scopus: 2-s2.0-66149129563
Elibrary: 13604120
OpenAlex: W2080083877
Citing:
DB Citing
OpenAlex 2
Altmetrics: