Sciact
  • EN
  • RU

Defining relations and Gröbner-Shirshov bases of Poisson algebras as of conformal modules Full article

Journal Journal of Algebra and its Applications
ISSN: 0219-4988
Output data Year: 2022, Volume: 21, Number: 7, Article number : 2250138, Pages count : DOI: 10.1142/S0219498822501389
Tags Conformal algebra; Gröbner-Shirshov basis; Poisson algebra
Authors Kolesnikov P.S. 1 , Panasenko A.S. 2
Affiliations
1 Sobolev Institute of Mathematics, Akad. Koptyug prosp., 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: We study the relation between Poisson algebras and representations of Lie conformal algebras. We establish a Gröbner-Shirshov basis theory framework for modules over associative conformal algebras and apply this technique to Poisson algebras considered as conformal modules over appropriate associative conformal envelopes of current Lie conformal algebras. As a result, we obtain a setting for the calculation of a Gröbner-Shirshov basis in a Poisson algebra.
Cite: Kolesnikov P.S. , Panasenko A.S.
Defining relations and Gröbner-Shirshov bases of Poisson algebras as of conformal modules
Journal of Algebra and its Applications. 2022. V.21. N7. 2250138 . DOI: 10.1142/S0219498822501389 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Dec 30, 2020
Accepted: Feb 15, 2021
Published online: Mar 26, 2021
Published print: Jul 6, 2022
Identifiers:
Web of science: WOS:000820925200013
Scopus: 2-s2.0-85103473073
Elibrary: 46786908
OpenAlex: W3135149930
Citing: Пока нет цитирований
Altmetrics: