Sciact
  • EN
  • RU

On the commutator in Leibniz algebras Full article

Journal International Journal of Algebra and Computation
ISSN: 0218-1967 , E-ISSN: 1793-6500
Output data Year: 2022, Volume: 32, Number: 4, Pages: 785-805 Pages count : 21 DOI: 10.1142/S0218196722500333
Tags anti-commutator; commutator; computer algebra; Leibniz algebras; polynomial identities
Authors Dzhumadil'daev A.S. 1,2 , Ismailov N.A. 2,3 , Sartayev B.K. 4,5
Affiliations
1 Kazakh-British Technical Unversity, Almaty, Kazakhstan
2 Saint Petersburg University, Saint Petersburg, Russian Federation
3 Astana It University, Nur-Sultan, Kazakhstan
4 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
5 Suleyman Demirel University, Kaskelen, Kazakhstan

Abstract: We prove that the class of algebras embeddable into Leibniz algebras with respect to the commutator product is not a variety. It is shown that every commutative metabelain algebra is embeddable into Leibniz algebras with respect to the anti-commutator. Furthermore, we study polynomial identities satisfied by the commutator in every Leibniz algebra. We extend the result of Dzhumadil'daev in [A. S. Dzhumadil'daev, q-Leibniz algebras, Serdica Math. J. 34(2) (2008) 415-440]. to identities up to degree 7 and give a conjecture on identities of higher degrees. As a consequence, we obtain an example of a non-Spechtian variety of anticommutative algebras.
Cite: Dzhumadil'daev A.S. , Ismailov N.A. , Sartayev B.K.
On the commutator in Leibniz algebras
International Journal of Algebra and Computation. 2022. V.32. N4. P.785-805. DOI: 10.1142/S0218196722500333 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Aug 12, 2021
Accepted: Jan 18, 2022
Published online: Feb 21, 2022
Published print: Apr 5, 2022
Identifiers:
Web of science: WOS:000806970600006
Scopus: 2-s2.0-85125532494
Elibrary: 48187804
OpenAlex: W4213389302
Citing:
DB Citing
Scopus 2
Web of science 1
OpenAlex 2
Altmetrics: