On the commutator in Leibniz algebras Научная публикация
Журнал |
International Journal of Algebra and Computation
ISSN: 0218-1967 , E-ISSN: 1793-6500 |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 32, Номер: 4, Страницы: 785-805 Страниц : 21 DOI: 10.1142/S0218196722500333 | ||||||||||
Ключевые слова | anti-commutator; commutator; computer algebra; Leibniz algebras; polynomial identities | ||||||||||
Авторы |
|
||||||||||
Организации |
|
Реферат:
We prove that the class of algebras embeddable into Leibniz algebras with respect to the commutator product is not a variety. It is shown that every commutative metabelain algebra is embeddable into Leibniz algebras with respect to the anti-commutator. Furthermore, we study polynomial identities satisfied by the commutator in every Leibniz algebra. We extend the result of Dzhumadil'daev in [A. S. Dzhumadil'daev, q-Leibniz algebras, Serdica Math. J. 34(2) (2008) 415-440]. to identities up to degree 7 and give a conjecture on identities of higher degrees. As a consequence, we obtain an example of a non-Spechtian variety of anticommutative algebras.
Библиографическая ссылка:
Dzhumadil'daev A.S.
, Ismailov N.A.
, Sartayev B.K.
On the commutator in Leibniz algebras
International Journal of Algebra and Computation. 2022. V.32. N4. P.785-805. DOI: 10.1142/S0218196722500333 WOS Scopus РИНЦ OpenAlex
On the commutator in Leibniz algebras
International Journal of Algebra and Computation. 2022. V.32. N4. P.785-805. DOI: 10.1142/S0218196722500333 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 12 авг. 2021 г. |
Принята к публикации: | 18 янв. 2022 г. |
Опубликована online: | 21 февр. 2022 г. |
Опубликована в печати: | 5 апр. 2022 г. |
Идентификаторы БД:
Web of science: | WOS:000806970600006 |
Scopus: | 2-s2.0-85125532494 |
РИНЦ: | 48187804 |
OpenAlex: | W4213389302 |