On the Solvability of Z3-Graded Novikov Algebras Научная публикация
| Журнал |
Symmetry
ISSN: 2073-8994 |
||||||
|---|---|---|---|---|---|---|---|
| Вых. Данные | Год: 2021, Том: 312, Страницы: 1-13 Страниц : 13 DOI: 10.3390/sym13020312 | ||||||
| Ключевые слова | Novikov algebra; graded algebra; solvability; regular automorphism; the ring of invarian | ||||||
| Авторы |
|
||||||
| Организации |
|
Реферат:
Symmetries of algebraic systems are called automorphisms. An algebra admits an automorphism of finite order n if and only if it admits a Zn-grading. Let N = N0 ⊕ N1 ⊕ N2 be a Z3-graded Novikov algebra. The main goal of the paper is to prove that over a field of characteristic not equal to 3, the algebra N is solvable if N0 is solvable. We also show that a Z2-graded Novikov algebra N = N0 ⊕ N1 over a field of characteristic not equal to 2 is solvable if N0 is solvable. This implies that for every n of the form n = 2k3l , any Zn-graded Novikov algebra N over a field of characteristic not equal to 2, 3 is solvable if N0 is solvable.
Библиографическая ссылка:
Zhelyabin V.
, Umirbaev U.
On the Solvability of Z3-Graded Novikov Algebras
Symmetry. 2021. V.312. P.1-13. DOI: 10.3390/sym13020312 WOS Scopus OpenAlex
On the Solvability of Z3-Graded Novikov Algebras
Symmetry. 2021. V.312. P.1-13. DOI: 10.3390/sym13020312 WOS Scopus OpenAlex
Даты:
| Поступила в редакцию: | 12 янв. 2021 г. |
| Принята к публикации: | 9 февр. 2021 г. |
| Опубликована в печати: | 13 февр. 2021 г. |
| Опубликована online: | 13 февр. 2021 г. |
Идентификаторы БД:
| Web of science: | WOS:000623142400001 |
| Scopus: | 2-s2.0-85101248251 |
| OpenAlex: | W3133203070 |