Sciact
  • EN
  • RU

Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension Full article

Journal Mathematische Annalen
ISSN: 0025-5831 , E-ISSN: 1432-1807
Output data Year: 2022, Volume: 383, Number: 1-2, Pages: 761-808 Pages count : 48 DOI: 10.1007/s00208-021-02180-z
Tags Free boundary problem; Ideal compressible magnetohydrodynamics; Nash–Moser iteration; Surface tension; Well-posedness
Authors Trakhinin Y. 1,2 , Wang T. 3
Affiliations
1 Sobolev Institute of Mathematics, Koptyug av. 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation
3 School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: We establish the local existence and uniqueness of solutions to the free-boundary ideal compressible magnetohydrodynamic equations with surface tension in three spatial dimensions by a suitable modification of the Nash–Moser iteration scheme. The main ingredients in proving the convergence of the scheme are the tame estimates and unique solvability of the linearized problem in the anisotropic Sobolev spaces H∗m for m large enough. In order to derive the tame estimates, we make full use of the boundary regularity enhanced from the surface tension. The unique solution of the linearized problem is constructed by designing some suitable ε–regularization and passing to the limit ε→ 0.
Cite: Trakhinin Y. , Wang T.
Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension
Mathematische Annalen. 2022. V.383. N1-2. P.761-808. DOI: 10.1007/s00208-021-02180-z WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Sep 26, 2020
Accepted: Apr 9, 2021
Published online: Apr 18, 2021
Published print: Jun 8, 2022
Identifiers:
Web of science: WOS:000640943500001
Scopus: 2-s2.0-85104865836
Elibrary: 46034030
OpenAlex: W3156470069
Citing:
DB Citing
Scopus 13
Web of science 13
OpenAlex 19
Elibrary 13
Altmetrics: