Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension Научная публикация
Журнал |
Mathematische Annalen
ISSN: 0025-5831 , E-ISSN: 1432-1807 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 383, Номер: 1-2, Страницы: 761-808 Страниц : 48 DOI: 10.1007/s00208-021-02180-z | ||||||
Ключевые слова | Free boundary problem; Ideal compressible magnetohydrodynamics; Nash–Moser iteration; Surface tension; Well-posedness | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (1)
1 |
Министерство науки и высшего образования РФ Математический центр в Академгородке |
075-15-2019-1613, 075-15-2022-281 |
Реферат:
We establish the local existence and uniqueness of solutions to the free-boundary ideal compressible magnetohydrodynamic equations with surface tension in three spatial dimensions by a suitable modification of the Nash–Moser iteration scheme. The main ingredients in proving the convergence of the scheme are the tame estimates and unique solvability of the linearized problem in the anisotropic Sobolev spaces H∗m for m large enough. In order to derive the tame estimates, we make full use of the boundary regularity enhanced from the surface tension. The unique solution of the linearized problem is constructed by designing some suitable ε–regularization and passing to the limit ε→ 0.
Библиографическая ссылка:
Trakhinin Y.
, Wang T.
Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension
Mathematische Annalen. 2022. V.383. N1-2. P.761-808. DOI: 10.1007/s00208-021-02180-z WOS Scopus РИНЦ OpenAlex
Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension
Mathematische Annalen. 2022. V.383. N1-2. P.761-808. DOI: 10.1007/s00208-021-02180-z WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 26 сент. 2020 г. |
Принята к публикации: | 9 апр. 2021 г. |
Опубликована online: | 18 апр. 2021 г. |
Опубликована в печати: | 8 июн. 2022 г. |
Идентификаторы БД:
Web of science: | WOS:000640943500001 |
Scopus: | 2-s2.0-85104865836 |
РИНЦ: | 46034030 |
OpenAlex: | W3156470069 |