Sciact
  • EN
  • RU

An Estimate for the Steklov Zeta Function of a Planar Domain Derived from a First Variation Formula Научная публикация

Журнал Journal of Geometric Analysis
ISSN: 1050-6926 , E-ISSN: 1559-002X
Вых. Данные Год: 2022, Том: 32, Номер: 5, Номер статьи : 161, Страниц : DOI: 10.1007/s12220-022-00890-7
Ключевые слова Dirichlet-to-Neumann operator; Inverse spectral problem; Steklov spectrum; Zeta function
Авторы Jollivet A. 1 , Sharafutdinov V. 2
Организации
1 Laboratoire de Mathématiques Paul Painlevé, CNRS UMR 8524/Université Lille 1 Sciences et Technologies, Villeneuve d’Ascq Cedex, 59655, France
2 Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation

Информация о финансировании (1)

1 Российский фонд фундаментальных исследований 20-51-15004

Реферат: We consider the Steklov zeta function ζΩ of a smooth bounded simply connected planar domain Ω⊂ R2 of perimeter 2 π. We provide a first variation formula for ζΩ under a smooth deformation of the domain. On the base of the formula, we prove that, for every s∈ (- 1 , 0) ∪ (0 , 1) , the difference ζΩ(s) - 2 ζR(s) is non-negative and is equal to zero if and only if Ω is a round disk (ζR is the classical Riemann zeta function). Our approach gives also an alternative proof of the inequality ζΩ(s) - 2 ζR(s) ≥ 0 for s∈ (- ∞, - 1] ∪ (1 , ∞) ; the latter fact was proved in our previous paper (2018) in a different way. We also provide an alternative proof of the equality ζΩ′(0)=2ζR′(0) obtained by Edward and Wu (Determinant of the Neumann operator on smooth Jordan curves. Proc Am Math Soc 111(2):357–363, 1991).
Библиографическая ссылка: Jollivet A. , Sharafutdinov V.
An Estimate for the Steklov Zeta Function of a Planar Domain Derived from a First Variation Formula
Journal of Geometric Analysis. 2022. V.32. N5. 161 . DOI: 10.1007/s12220-022-00890-7 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 4 февр. 2022 г.
Принята к публикации: 11 февр. 2022 г.
Опубликована online: 9 мар. 2022 г.
Опубликована в печати: 10 мая 2022 г.
Идентификаторы БД:
Web of science: WOS:000766588900001
Scopus: 2-s2.0-85126222047
РИНЦ: 48190144
OpenAlex: W3014425014
Цитирование в БД:
БД Цитирований
Scopus 2
Web of science 2
OpenAlex 2
РИНЦ 1
Альметрики: