Exponent of Convergence of a Sequence of Ergodic Averages Full article
| Journal |
Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876 |
||
|---|---|---|---|
| Output data | Year: 2022, Volume: 112, Number: 1-2, Pages: 271-280 Pages count : 10 DOI: 10.1134/S000143462207029X | ||
| Tags | Birkhoff’s ergodic theorem; rates of convergence in ergodic theorems; Tanny–Woś spaces; the exponent of convergence | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Sobolev Institute of Mathematics | 0314-2019-0005 |
Abstract:
Abstract: For a sequence of ergodic averages, we consider its exponent of convergence, which is a numerical characteristic of two-sided power-law estimates of the rate of pointwise convergence of this sequence. Criteria for the boundary values 1 and ∞ of the exponent of convergence are given. Functions cohomologous to zero with a given the exponent of convergence are also described.
Cite:
Podvigin I.V.
Exponent of Convergence of a Sequence of Ergodic Averages
Mathematical Notes. 2022. V.112. N1-2. P.271-280. DOI: 10.1134/S000143462207029X WOS Scopus РИНЦ OpenAlex
Exponent of Convergence of a Sequence of Ergodic Averages
Mathematical Notes. 2022. V.112. N1-2. P.271-280. DOI: 10.1134/S000143462207029X WOS Scopus РИНЦ OpenAlex
Original:
Подвигин И.В.
Показатель сходимости последовательности эргодических средних
Математические заметки. 2022. Т.112. №2. С.251-262. DOI: 10.4213/mzm13483 РИНЦ OpenAlex
Показатель сходимости последовательности эргодических средних
Математические заметки. 2022. Т.112. №2. С.251-262. DOI: 10.4213/mzm13483 РИНЦ OpenAlex
Dates:
| Submitted: | Mar 9, 2022 |
| Accepted: | Mar 15, 2022 |
| Published online: | Aug 26, 2022 |
Identifiers:
| Web of science: | WOS:000846829000029 |
| Scopus: | 2-s2.0-85136619687 |
| Elibrary: | 51337749 |
| OpenAlex: | W4293794997 |