Sciact
  • EN
  • RU

Exponent of Convergence of a Sequence of Ergodic Averages Full article

Journal Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876
Output data Year: 2022, Volume: 112, Number: 1-2, Pages: 271-280 Pages count : 10 DOI: 10.1134/S000143462207029X
Tags Birkhoff’s ergodic theorem; rates of convergence in ergodic theorems; Tanny–Woś spaces; the exponent of convergence
Authors Podvigin I.V. 1
Affiliations
1 Sobolev Institute of Mathematics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Funding (1)

1 Sobolev Institute of Mathematics 0314-2019-0005

Abstract: Abstract: For a sequence of ergodic averages, we consider its exponent of convergence, which is a numerical characteristic of two-sided power-law estimates of the rate of pointwise convergence of this sequence. Criteria for the boundary values 1 and ∞ of the exponent of convergence are given. Functions cohomologous to zero with a given the exponent of convergence are also described.
Cite: Podvigin I.V.
Exponent of Convergence of a Sequence of Ergodic Averages
Mathematical Notes. 2022. V.112. N1-2. P.271-280. DOI: 10.1134/S000143462207029X WOS Scopus РИНЦ OpenAlex
Original: Подвигин И.В.
Показатель сходимости последовательности эргодических средних
Математические заметки. 2022. Т.112. №2. С.251-262. DOI: 10.4213/mzm13483 РИНЦ OpenAlex
Dates:
Submitted: Mar 9, 2022
Accepted: Mar 15, 2022
Published online: Aug 26, 2022
Identifiers:
Web of science: WOS:000846829000029
Scopus: 2-s2.0-85136619687
Elibrary: 51337749
OpenAlex: W4293794997
Citing:
DB Citing
Scopus 2
Web of science 3
OpenAlex 2
Elibrary 2
Altmetrics: