Sciact
  • EN
  • RU

Universal enveloping algebra of a pair of compatible Lie brackets Full article

Journal International Journal of Algebra and Computation
ISSN: 0218-1967 , E-ISSN: 1793-6500
Output data Year: 2022, DOI: 10.1142/S0218196722500588
Tags compatible Lie brackets; growth rate; Gröbner - Shirshov basis; Universal enveloping algebra over an operad
Authors Gubarev V. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Acad. Koptyug Avenue 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Pirogova street 2, Novosibirsk, 630090, Russian Federation

Funding (1)

1 Президент РФ 075-15-2021-129, MK-1241.2021.1.1

Abstract: By applying the Poincaré - Birkhoff - Witt property and the Gröbner - Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of Ginzburg and Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over n-dimensional compatible Lie algebra equals n + 1.
Cite: Gubarev V.
Universal enveloping algebra of a pair of compatible Lie brackets
International Journal of Algebra and Computation. 2022. DOI: 10.1142/S0218196722500588 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Oct 30, 2021
Accepted: Jun 29, 2022
Published online: Aug 10, 2022
Identifiers:
Web of science: WOS:000848578300001
Scopus: 2-s2.0-85136237535
Elibrary: 57858886
OpenAlex: W3206946820
Citing: Пока нет цитирований
Altmetrics: