Universal enveloping algebra of a pair of compatible Lie brackets Full article
| Journal |
International Journal of Algebra and Computation
ISSN: 0218-1967 , E-ISSN: 1793-6500 |
||||
|---|---|---|---|---|---|
| Output data | Year: 2022, DOI: 10.1142/S0218196722500588 | ||||
| Tags | compatible Lie brackets; growth rate; Gröbner - Shirshov basis; Universal enveloping algebra over an operad | ||||
| Authors |
|
||||
| Affiliations |
|
Funding (1)
| 1 | Президент РФ | 075-15-2021-129, MK-1241.2021.1.1 |
Abstract:
By applying the Poincaré - Birkhoff - Witt property and the Gröbner - Shirshov bases technique, we find the linear basis of the associative universal enveloping algebra in the sense of Ginzburg and Kapranov of a pair of compatible Lie brackets. We state that the growth rate of this universal enveloping over n-dimensional compatible Lie algebra equals n + 1.
Cite:
Gubarev V.
Universal enveloping algebra of a pair of compatible Lie brackets
International Journal of Algebra and Computation. 2022. DOI: 10.1142/S0218196722500588 WOS Scopus РИНЦ OpenAlex
Universal enveloping algebra of a pair of compatible Lie brackets
International Journal of Algebra and Computation. 2022. DOI: 10.1142/S0218196722500588 WOS Scopus РИНЦ OpenAlex
Dates:
| Submitted: | Oct 30, 2021 |
| Accepted: | Jun 29, 2022 |
| Published online: | Aug 10, 2022 |
Identifiers:
| Web of science: | WOS:000848578300001 |
| Scopus: | 2-s2.0-85136237535 |
| Elibrary: | 57858886 |
| OpenAlex: | W3206946820 |
Citing:
Пока нет цитирований