Sciact
  • EN
  • RU

GENERIC COMPLEXITY OF THE MEMBERSHIP PROBLEM FOR SEMIGROUPS OF INTEGER MATRICES [О ГЕНЕРИЧЕСКОЙ СЛОЖНОСТИ ПРОБЛЕМЫ ВХОЖДЕНИЯ ДЛЯ ПОЛУГРУПП ЦЕЛОЧИСЛЕННЫХ МАТРИЦ] Научная публикация

Журнал Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika)
ISSN: 2071-0410 , E-ISSN: 2311-2263
Вых. Данные Год: 2022, Номер: 55, Страницы: 95-101 Страниц : 7 DOI: 10.17223/20710410/55/7
Ключевые слова generic complexity; membership problem; semigroups of integer matrices
Авторы Rybalov A.N. 1
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Информация о финансировании (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0003

Реферат: The membership problem for finitely generated subgroups (subsemigroups) of groups (semigroups) is a classical algorithmic problem, actively studied for many decades. Already for sufficiently simple groups and semigroups, this problem becomes undecidable. For example, K. A. Mikhailova in 1966 proved the undecidability of the membership problem for finitely generated subgroups (hence and for subsemigroups) of a direct product F2 × F2 of two free groups of rank 2. Since, by the well-known Sanov theorem, the group F2 has an exact representation by integer matrices of order 2, the group F2 × F2 is a subgroup of the group GL4(Z) of integer matrices of order 4. It easily implies the undecidability of this problem for the group GLk(Z) for k > 4. Undecidability of the membership problem for finitely generated subsemigroups of semigroups of integer matrices of order > 3 follows from Paterson’s result proved in 1970. In this paper, we propose a strongly generic algorithm deciding the membership problem for semigroups of integer matrices of arbitrary order for inputs from a subset whose sequence of frequencies exponentially fast converges to 1 with increasing size.
Библиографическая ссылка: Rybalov A.N.
GENERIC COMPLEXITY OF THE MEMBERSHIP PROBLEM FOR SEMIGROUPS OF INTEGER MATRICES [О ГЕНЕРИЧЕСКОЙ СЛОЖНОСТИ ПРОБЛЕМЫ ВХОЖДЕНИЯ ДЛЯ ПОЛУГРУПП ЦЕЛОЧИСЛЕННЫХ МАТРИЦ]
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2022. N55. P.95-101. DOI: 10.17223/20710410/55/7 WOS Scopus РИНЦ OpenAlex
Даты:
Опубликована online: 16 мар. 2022 г.
Идентификаторы БД:
Web of science: WOS:000780031400007
Scopus: 2-s2.0-85136282207
РИНЦ: 48164195
OpenAlex: W4285292692
Цитирование в БД:
БД Цитирований
Scopus 1
Web of science 1
OpenAlex 2
РИНЦ 2
Альметрики: