Sciact
  • EN
  • RU

Optimization of the Training Dataset for Numerical Dispersion Mitigation Neural Network Научная публикация

Журнал Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349
Вых. Данные Год: 2022, Том: 13378 LNCS, Страницы: 295-309 Страниц : 15 DOI: 10.1007/978-3-031-10562-3_22
Ключевые слова Deep learning; Numerical dispersion; Seismic modelling
Авторы Gadylshin K. 1 , Lisitsa V. 1 , Gadylshina K. 2 , Vishnevsky D. 1
Организации
1 Institute of Petroleum Geology and Geophysics SB RAS, 3 Koptug ave., Novosibirsk, 630090, Russian Federation
2 Sobolev Institute of Mathematics SB RAS, 4 Koptug ave., Novosibirsk, 630090, Russian Federation

Информация о финансировании (4)

1 Российский научный фонд 22-11-00004
2 Российский научный фонд 22-21-00738
3 Российский научный фонд 19-77-20004
4 Президент РФ MK-3947.2021.1.5

Реферат: We present an approach to construct the training dataset for the numerical dispersion mitigation network (NDM-net). The network is designed to suppress numerical error in the simulated seismic wavefield. The training dataset is the wavefield simulated using a fine grid, thus almost free from the numerical dispersion. Generation of the training dataset is the most computationally intense part of the algorithm, thus it is important to reduce the number of seismograms used in the training dataset to improve the efficiency of the NDM-net. In this work, we introduce the discrepancy between seismograms and construct the dataset, so that the discrepancy between the dataset and any seismogram is below the prescribed level.
Библиографическая ссылка: Gadylshin K. , Lisitsa V. , Gadylshina K. , Vishnevsky D.
Optimization of the Training Dataset for Numerical Dispersion Mitigation Neural Network
Lecture Notes in Computer Science. 2022. V.13378 LNCS. P.295-309. DOI: 10.1007/978-3-031-10562-3_22 Scopus OpenAlex
Даты:
Опубликована online: 4 авг. 2022 г.
Идентификаторы БД:
Scopus: 2-s2.0-85135909737
OpenAlex: W4289601211
Цитирование в БД:
БД Цитирований
Scopus 3
OpenAlex 9
Альметрики: