Dispersion Analysis of Smoothed Particle Hydrodynamics to Study Convergence and Numerical Phenomena at Coarse Resolution Научная публикация
Журнал |
Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 13375 LNCS, Страницы: 184-197 Страниц : 14 DOI: 10.1007/978-3-031-10522-7_14 | ||||||
Ключевые слова | Convergence analysis; Numerical dispersion; Smoothed particles hydrodynamics (SPH) | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (2)
1 | Российский научный фонд | 21-71-20003 |
2 | Российский научный фонд | 21-19-00429 |
Реферат:
The Smoothed Particle Hydrodynamics (SPH) method is a meshless Lagrangian method widely used in continuum mechanics simulation. Despite its wide application, theoretical issues of SPH approximation, stability, and convergence are among the unsolved problems of computational mathematics. In this paper, we present the application of dispersion analysis to the SPH approximation of one-dimensional gas dynamics equations to study numerical phenomena that appeared in practice. We confirmed that SPH converges only if the number of particles per wavelength increases while smoothing length decreases. At the same time, reduction of the smoothing length when keeping the number of particles in the kernel fixed (typical convergence results for finite differences and finite elements) does not guarantee the convergence of the numerical solution to the analytical one. We indicate the particular regimes with pronounced irreducible numerical dispersion. For coarse resolution, our theoretical findings are confirmed in simulations.
Библиографическая ссылка:
Stoyanovskaya O.
, Lisitsa V.
, Anoshin S.
, Markelova T.
Dispersion Analysis of Smoothed Particle Hydrodynamics to Study Convergence and Numerical Phenomena at Coarse Resolution
Lecture Notes in Computer Science. 2022. V.13375 LNCS. P.184-197. DOI: 10.1007/978-3-031-10522-7_14 WOS Scopus OpenAlex
Dispersion Analysis of Smoothed Particle Hydrodynamics to Study Convergence and Numerical Phenomena at Coarse Resolution
Lecture Notes in Computer Science. 2022. V.13375 LNCS. P.184-197. DOI: 10.1007/978-3-031-10522-7_14 WOS Scopus OpenAlex
Даты:
Опубликована online: | 15 июл. 2022 г. |
Идентификаторы БД:
Web of science: | WOS:000916469700014 |
Scopus: | 2-s2.0-85135029590 |
OpenAlex: | W4285414554 |