Sciact
  • EN
  • RU

Semiexponential Distributions and Related Large Deviation Principles for Trajectories of Random Walks Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2022, Volume: 63, Number: 4, Pages: 651-661 Pages count : 11 DOI: 10.1134/S003744662204005X
Tags 519.21; characterization; large deviation principle; semiexponential distribution
Authors Borovkov A.A. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0010

Abstract: We obtain a rather simple characterization of semiexponential distributions.This allows us to relax substantiallythe conditions for the fulfillment of the moderately large deviation principlefor the trajectories of random walkswhen Cramér’s condition does not hold.Besides, using the previous results,we establish the local large deviation principle (LDP)outside the zone of moderately large deviationsfor semiexponential random walks.The latter principle differs much from the LDP in the case that Cramér’s condition holds:The deviation function for it is concave but not convex,the deviation functional is finite only on jump trajectories, and so forth.
Cite: Borovkov A.A.
Semiexponential Distributions and Related Large Deviation Principles for Trajectories of Random Walks
Siberian Mathematical Journal. 2022. V.63. N4. P.651-661. DOI: 10.1134/S003744662204005X WOS Scopus РИНЦ OpenAlex
Original: Боровков А.А.
Семиэкспоненциальные распределения и связанные с ними принципы больших уклонений для траекторий случайных блужданий
Сибирский математический журнал. 2022. Т.63. №4. С.783-795. DOI: 10.33048/smzh.2022.63.405 РИНЦ
Dates:
Submitted: Mar 1, 2022
Accepted: Jun 15, 2022
Published online: Jul 27, 2022
Identifiers:
Web of science: WOS:000831328200005
Scopus: 2-s2.0-85135044574
Elibrary: 51440743
OpenAlex: W4288060997
Citing:
DB Citing
Scopus 1
Web of science 1
OpenAlex 1
Altmetrics: