h-, p-, and hp-Versions of the Least-Squares Collocation Method for Solving Boundary Value Problems for Biharmonic Equation in Irregular Domains and Their Applications Full article
Journal |
Computational Mathematics and Mathematical Physics
ISSN: 0965-5425 , E-ISSN: 1555-6662 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2022, Volume: 62, Number: 4, Pages: 517-537 Pages count : 21 DOI: 10.1134/S0965542522040029 | ||||||||
Tags | bending of isotropic plate; biharmonic equation; boundary value problem; higher order of convergence; irregular multiply-connected domain; least-squares collocation method | ||||||||
Authors |
|
||||||||
Affiliations |
|
Funding (2)
1 | Khristianovich Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia | 121030500137-5 |
2 | Russian Foundation for Basic Research | 18-29-18029 |
Abstract:
Abstract: New h-, p-, and hp-versions of the least-squares collocation method are proposed and implemented. They yield approximate solutions of boundary value problems for an inhomogeneous biharmonic equation in irregular and multiply-connected domains. Formulas for the extension operation in the transition from coarse to finer grids on a multigrid complex are given in the case of applying various spaces of polynomials. It is experimentally shown that numerical solutions of boundary value problems produced by the developed versions of the method have a higher order of convergence to analytical solutions with no singularities. The results are compared with those of other authors produced by applying finite difference, finite element, and other methods based on Chebyshev polynomials. Examples of problems with singularities are considered. The developed versions of the method are used to simulate the bending of an elastic isotropic plate of irregular shape subjected to transverse loading.
Cite:
Belyaev V.A.
, Bryndin L.S.
, Golushko S.K.
, Semisalov B.V.
, Shapeev V.P.
h-, p-, and hp-Versions of the Least-Squares Collocation Method for Solving Boundary Value Problems for Biharmonic Equation in Irregular Domains and Their Applications
Computational Mathematics and Mathematical Physics. 2022. V.62. N4. P.517-537. DOI: 10.1134/S0965542522040029 WOS Scopus РИНЦ OpenAlex
h-, p-, and hp-Versions of the Least-Squares Collocation Method for Solving Boundary Value Problems for Biharmonic Equation in Irregular Domains and Their Applications
Computational Mathematics and Mathematical Physics. 2022. V.62. N4. P.517-537. DOI: 10.1134/S0965542522040029 WOS Scopus РИНЦ OpenAlex
Original:
Беляев В.А.
, Брындин В.Д.
, Голушко С.К.
, Semisalov B.V.
, Шапеев В.П.
H-, P- и HР-варианты метода коллокации и наименьших квадратов для решения краевых задач для бигармонического уравнения в нерегулярных областях и их приложения
Журнал вычислительной математики и математической физики. 2022. V.62. N4. P.531–552. DOI: 10.31857/S0044466922040020 РИНЦ
H-, P- и HР-варианты метода коллокации и наименьших квадратов для решения краевых задач для бигармонического уравнения в нерегулярных областях и их приложения
Журнал вычислительной математики и математической физики. 2022. V.62. N4. P.531–552. DOI: 10.31857/S0044466922040020 РИНЦ
Dates:
Submitted: | Feb 10, 2020 |
Accepted: | Nov 16, 2021 |
Published online: | May 27, 2022 |
Identifiers:
Web of science: | WOS:000800838600001 |
Scopus: | 2-s2.0-85130838797 |
Elibrary: | 48586497 |
OpenAlex: | W4281709696 |