Sciact
  • EN
  • RU

Analysis of approaches to spline interpolation of functions with large gradients in the boundary layer Научная публикация

Журнал Journal of Physics: Conference Series
ISSN: 1742-6588 , E-ISSN: 1742-6596
Вых. Данные Год: 2022, Том: 2182, Номер: 1, Номер статьи : 012016, Страниц : DOI: 10.1088/1742-6596/2182/1/012016
Авторы Blatov I.A. 1 , Zadorin A.I. 2
Организации
1 Volga Region State University of Telecommunications and Informatics, ul. L'va Tolstogo, 23, Samara, 443010, Russian Federation
2 Sobolev Institute of Mathematics, pr. Ak. Koptyuga 4, Novosibirsk, 630090, Russian Federation

Информация о финансировании (2)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0016
2 Российский фонд фундаментальных исследований 20-01-00650

Реферат: The problem of cubic spline interpolation of functions with large gradients in the boundary layer is considered. It is assumed that the decomposition in the form of the sum of the regular and singular components is valid for the interpolated function. This decomposition is valid for the solution of a boundary value problem for a second order ordinary differential equation with a small parameter e at the highest derivative. An overview of approaches to the construction of splines, the error of which is uniform with respect to the small parameter e, is given. The approaches are based on the use of Shishkin and Bakhvalov meshes, which are thickened in the boundary layer region. An alternative approach based on a modification of a cubic spline with fitting to the singular component of the interpolated function is also considered. The comparison of the accuracy of the applied approaches with the performance of computational experiments is carried out. © Published under licence by IOP Publishing Ltd.
Библиографическая ссылка: Blatov I.A. , Zadorin A.I.
Analysis of approaches to spline interpolation of functions with large gradients in the boundary layer
Journal of Physics: Conference Series. 2022. V.2182. N1. 012016 . DOI: 10.1088/1742-6596/2182/1/012016 Scopus РИНЦ OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85127719253
РИНЦ: 48425614
OpenAlex: W4220693698
Цитирование в БД: Пока нет цитирований
Альметрики: