Sciact
  • EN
  • RU

A simple rounding scheme for multistage optimization Научная публикация

Журнал Theoretical Computer Science
ISSN: 0304-3975
Вых. Данные Год: 2022, Том: 907, Страницы: 1-10 Страниц : 10 DOI: 10.1016/j.tcs.2022.01.009
Ключевые слова Approximation algorithms; LP-rounding; Multistage optimization
Авторы Bampis E. 1 , Christou D. 5 , Escoffier B. 1,2 , Kononov A. 3,4 , Nguyen K.T. 1,6
Организации
1 Sorbonne Université, CNRS, LIP6 UMR 7606, 4 place Jussieu, Paris, 75005, France
2 Institut Universitaire de France, France
3 Sobolev Institute of Mathematics, Russian Federation
4 Novosibirsk State University, Russian Federation
5 University of Texas, Austin, United States
6 IBISC, Univ Evry, University Paris-Saclay, France

Информация о финансировании (1)

1 Российский научный фонд 21-41-09017

Реферат: We consider the multistage framework introduced in (Gupta et al., Eisenstat et al., both in ICALP 2014), where we are given a time horizon and a sequence of instances of a (static) combinatorial optimization problem (one for each time step), and the goal is to find a sequence of solutions (one for each time step) reaching a tradeoff between the quality of the solutions in each time step and the stability/similarity of the solutions in consecutive time steps. We first introduce a novel rounding scheme, tailored for multistage problems, that accounts for the moving cost (or stability revenue) of adjacent solutions. Using this rounding scheme, we propose improved approximation algorithms for the multistage variants of Prize-Collecting Steiner Tree and Prize-Collecting Traveling Salesman problems. Furthermore, we introduce a 2-approximation algorithm for multistage Multi-Cut on trees, and we also show that our general scheme can be extended to maximization problems, by providing a 0.75-approximation algorithm for the multistage variant of MaxSat.
Библиографическая ссылка: Bampis E. , Christou D. , Escoffier B. , Kononov A. , Nguyen K.T.
A simple rounding scheme for multistage optimization
Theoretical Computer Science. 2022. V.907. P.1-10. DOI: 10.1016/j.tcs.2022.01.009 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000760309100001
Scopus: 2-s2.0-85122933873
РИНЦ: 48143477
OpenAlex: W4206327237
Цитирование в БД:
БД Цитирований
РИНЦ 1
Альметрики: