Numerical dispersion mitigation neural network for seismic modeling Full article
Journal |
Geophysics
ISSN: 0016-8033 , E-ISSN: 1942-2156 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 87, Number: 3, Pages: 1-49 Pages count : 49 DOI: 10.1190/geo2021-0242.1 | ||||
Authors |
|
||||
Affiliations |
|
Funding (2)
1 | Russian Science Foundation | 22-21-00738 |
2 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
In this study, we present a novel approach for seismic modeling combining conventional finite differences with deep neural networks. The method includes the following steps: First, a training dataset composed of a small number of common-shot gathers is generated. The dataset is computed using a finite-difference scheme with fine spatial and temporal discretization. Second, the entire set of common-shot seismograms is generated using an inaccurate numerical method, such as a finite difference scheme on a coarse mesh. Third, the numerical dispersion mitigation neural network is trained and applied to the entire dataset to suppress the numerical dispersion. We tested the approach on two 2D models, illustrating a significant acceleration of seismic modeling. © 2022 Society of Exploration Geophysicists.
Cite:
Gadylshin K.
, Vishnevsky D.
, Gadylshina K.
, Lisitsa V.
Numerical dispersion mitigation neural network for seismic modeling
Geophysics. 2022. V.87. N3. P.1-49. DOI: 10.1190/geo2021-0242.1 WOS Scopus РИНЦ OpenAlex
Numerical dispersion mitigation neural network for seismic modeling
Geophysics. 2022. V.87. N3. P.1-49. DOI: 10.1190/geo2021-0242.1 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: | WOS:000793484400005 |
Scopus: | 2-s2.0-85127127342 |
Elibrary: | 48420721 |
OpenAlex: | W4221029989 |