Sciact
  • EN
  • RU

Numerical dispersion mitigation neural network for seismic modeling Full article

Journal Geophysics
ISSN: 0016-8033 , E-ISSN: 1942-2156
Output data Year: 2022, Volume: 87, Number: 3, Pages: 1-49 Pages count : 49 DOI: 10.1190/geo2021-0242.1
Authors Gadylshin K. 1 , Vishnevsky D. 2 , Gadylshina K. 2 , Lisitsa V. 1
Affiliations
1 Institute of Mathematics SB RAS, Novosibirsk, Russian Federation
2 Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russian Federation

Funding (2)

1 Russian Science Foundation 22-21-00738
2 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: In this study, we present a novel approach for seismic modeling combining conventional finite differences with deep neural networks. The method includes the following steps: First, a training dataset composed of a small number of common-shot gathers is generated. The dataset is computed using a finite-difference scheme with fine spatial and temporal discretization. Second, the entire set of common-shot seismograms is generated using an inaccurate numerical method, such as a finite difference scheme on a coarse mesh. Third, the numerical dispersion mitigation neural network is trained and applied to the entire dataset to suppress the numerical dispersion. We tested the approach on two 2D models, illustrating a significant acceleration of seismic modeling. © 2022 Society of Exploration Geophysicists.
Cite: Gadylshin K. , Vishnevsky D. , Gadylshina K. , Lisitsa V.
Numerical dispersion mitigation neural network for seismic modeling
Geophysics. 2022. V.87. N3. P.1-49. DOI: 10.1190/geo2021-0242.1 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000793484400005
Scopus: 2-s2.0-85127127342
Elibrary: 48420721
OpenAlex: W4221029989
Citing:
DB Citing
Scopus 17
Web of science 12
OpenAlex 20
Elibrary 23
Altmetrics: