Science activity
Articles (11) More info
| 1 |
Bratchikov D.
, Cheverda V.
, Gadylshin K.
Born approximation and transfer learning to accelerate the training stage in data-driven end-to-end approach for seismic monitoring in viscoelastic media In compilation Cуперкомпьютерные дни в России: труды международной конференции, 23–24 сентября 2024 г., Москва. – Москва., 2025. – C.3-17. – ISBN 978-5-317-07287-2. DOI: 10.1007/978-3-031-78459-0_1 Scopus OpenAlex |
| 2 |
Gondyul E.
, Lisitsa V.
, Gadylshin K.
, Vishnevsky D.
Numerical dispersion mitigation neural network with velocity model correction Computers and Geosciences. 2025. V.196. 105806 :1-12. DOI: 10.1016/j.cageo.2024.105806 РИНЦ |
| 3 |
Gadylshin K.
, Gondyul E.
, Lisitsa V.
, Gadylshina K.
, Vishnevsky D.
Mitigation of numerical dispersion in seismic data in spectral domain with neural networks Soil Dynamics and Earthquake Engineering. 2024. V.187. 109028 :1-15. DOI: 10.1016/j.soildyn.2024.109028 WOS Scopus РИНЦ OpenAlex |
| 4 |
Gondyul E.
, Lisitsa V.
, Gadylshin K.
, Vishnevsky D.
Numerical Dispersion Mitigation Neural Network with the Model-Based Training Dataset Optimization In compilation Computational Science and Its Applications – ICCSA 2023 Workshops Athens, Greece, July 3–6, 2023, Proceedings. – Springer., 2023. – Т.Part III. – C.19-30. – ISBN 9783031371103. DOI: 10.1007/978-3-031-37111-0_2 Scopus OpenAlex |
| 5 |
Gadylshin K.
, Lisitsa V.
, Vishnevsky D.
, Gadylshina K.
Hausdorff-distance-based training dataset construction for numerical dispersion mitigation neural network Computers and Geosciences. 2023. V.180. 105438 :1-9. DOI: 10.1016/j.cageo.2023.105438 WOS Scopus РИНЦ OpenAlex |
| 6 |
Bratchikov D.
, Gadylshin K.
Seismic Monitoring of Hydrocarbon Deposits Using a Viscoelastic Medium Model Based on Deep Learning In compilation Computational Science and Its Applications – ICCSA 2023 Workshops Athens, Greece, July 3–6, 2023, Proceedings. – Springer., 2023. – Т.Part III. – C.59-75. – ISBN 9783031371103. DOI: 10.1007/978-3-031-37111-0_5 Scopus OpenAlex |
| 7 |
Protasov M.
, Gadylshin K.
, Neklyudov D.
, Klimes L.
Full Waveform Inversion Based on an Asymptotic Solution of Helmholtz Equation Geosciences. 2023. V.13. N1. 19 :1-13. DOI: 10.3390/geosciences13010019 РИНЦ |
| 8 |
Gadylshin K.
, Silvestrov I.
, Bakulin A.
Deep-learning-based local wavefront attributes and their application to 3D prestack data enhancement Geophysics. 2023. V.88. N3. P.V277-V289. DOI: 10.1190/geo2022-0226.1 РИНЦ |
| 9 |
Gadylshin K.
, Vishnevsky D.
, Gadylshina K.
, Lisitsa V.
Numerical dispersion mitigation neural network for seismic modeling Geophysics. 2022. V.87. N3. P.1-49. DOI: 10.1190/geo2021-0242.1 WOS Scopus РИНЦ OpenAlex |
| 10 |
Cheverda V.
, Bratchikov D.
, Gadylshin K.
, Golubeva E.
, Malakhova V.
, Reshetova G.
Subsea Methane Hydrates: Origin and Monitoring the Impacts of Global Warming Applied Sciences. 2022. V.23. N12. 11929 :1-17. DOI: 10.3390/app122311929 WOS Scopus РИНЦ OpenAlex |
| 11 |
Cheverda V.A.
, Bratchikov D.S.
, Gadylshin K.G.
, Golubeva E.N.
, Malakhova V.V.
, Reshetova G.V.
Development of a Methodology for Monitoring the State of Methane Hydrate Deposits of the East-Siberian Shelf Geophysics. 2022. V.507. NSUPPL 3. P.S424-S430. DOI: 10.1134/S1028334X22601419 WOS Scopus РИНЦ OpenAlex |
Conference theses (1) More info
| 1 |
Bakulin A.
, Silvestrov I.
, Dmitriev M.
, Neklyudov D.
, Protasov M.
, Gadylshin K.
Data-domain reflection tomography for initial velocity model building using challenging 3d seismic data SEG Technical Program Expanded Abstracts. 2019. P.5120-5124. DOI: 10.1190/segam2019-3214902.1 |
Conference attendances (2) More info
| 1 |
Чеверда В.А.
, Гадыльшин К.Г.
, Решетова Г.В.
Multiparameter inverse problems of seismic wave propagation in geological media Евразийская научная конференция “Обратные и некорректные задачи в естествознании и искусственный интеллект” 16-20 Apr 2024 |
| 2 |
Bratchikov D.
, Gadylshin K.
Seismic Monitoring of Hydrocarbon Deposits Using a Viscoelastic Medium Model Based on Deep Learning The International Conference on Computational Sciences and its Applications 03-06 Jul 2023 |