Sciact
  • EN
  • RU

Functional and Analytical Properties of a Class of Mappings of Quasiconformal Analysis on Carnot Groups Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2022, Volume: 63, Number: 2, Pages: 233-261 Pages count : 29 DOI: 10.1134/S0037446622020045
Tags 517.518:517.54; capacity of a condenser; Carnot group; composition operator; quasiconformal analysis; Sobolev space
Authors Vodopyanov S.K. 1 , Evseev N.A. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Funding (1)

1 Sobolev Institute of Mathematics 0314-2019-0006

Abstract: This article addresses the conceptual questions ofquasiconformal analysis on Carnot groups.We prove the equivalence of the three classes of homeomorphisms:the mappings of the first classinduce bounded composition operatorsfrom a weighted Sobolev space into an unweighted one;the mappings of the second classare characterized by way of estimatingthe capacity of the preimage of a condenserin terms of the weighted capacity of the condenser in the image;the mappings of the third classare described viaa pointwise relation between the norm of the matrix of the differential,the Jacobian,and the weight function.We obtain a new proof of the absolute continuity of mappings. © 2022, Pleiades Publishing, Ltd.
Cite: Vodopyanov S.K. , Evseev N.A.
Functional and Analytical Properties of a Class of Mappings of Quasiconformal Analysis on Carnot Groups
Siberian Mathematical Journal. 2022. V.63. N2. P.233-261. DOI: 10.1134/S0037446622020045 WOS Scopus РИНЦ OpenAlex
Original: Водопьянов С.К. , Евсеев Н.А.
Функциональные и аналитические свойства одного класса отображений квазиконформного анализа на группах Карно
Сибирский математический журнал. 2022. Т.63. №2. С.283–315. DOI: 10.33048/smzh.2022.63.204 РИНЦ
Identifiers:
Web of science: WOS:000778950000004
Scopus: 2-s2.0-85127927235
Elibrary: 48427746
OpenAlex: W4225972025
Citing:
DB Citing
Scopus 7
Web of science 5
OpenAlex 7
Elibrary 6
Altmetrics: