Sciact
  • EN
  • RU

On Possible Estimates of the Rate of Pointwise Convergence in the Birkhoff Ergodic Theorem Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2022, Volume: 63, Number: 2, Pages: 316-325 Pages count : 10 DOI: 10.1134/S0037446622020094
Tags 517.987; Birkhoff ergodic theorem; ergodic theorems for subsequences; rate of convergence in ergodic theorems
Authors Podvigin I.V. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
2 Novosibirsk State University, Novosibirsk, Russian Federation

Funding (1)

1 Sobolev Institute of Mathematics 0314-2019-0005

Abstract: We study the separation from zero of a sequence $ \phi $to obtain the estimates of the form $ {\phi(n)/n} $ for the rate ofpointwise convergence of ergodic averages.Each of these $ \phi $ is shown to be separated from zero for mixingswhich is not always so for weak mixings.Moreover, for the characteristic function of a nontrivial set,it is shown that there exists a measure preserving transformation witharbitrarily slow decay of ergodic averages.
Cite: Podvigin I.V.
On Possible Estimates of the Rate of Pointwise Convergence in the Birkhoff Ergodic Theorem
Siberian Mathematical Journal. 2022. V.63. N2. P.316-325. DOI: 10.1134/S0037446622020094 WOS Scopus РИНЦ OpenAlex
Original: Podvigin I.V.
О возможных оценках скорости поточечной сходимости в эргодической теореме Биркгофа
Сибирский математический журнал. 2022. Т.63. №2. С.379-390. DOI: 10.33048/smzh.2022.63.209 РИНЦ
Identifiers:
Web of science: WOS:000778950000009
Scopus: 2-s2.0-85127770835
Elibrary: 48426863
OpenAlex: W4225847979
Citing:
DB Citing
Scopus 4
Web of science 3
OpenAlex 3
Elibrary 3
Altmetrics: