On Possible Estimates of the Rate of Pointwise Convergence in the Birkhoff Ergodic Theorem Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 63, Number: 2, Pages: 316-325 Pages count : 10 DOI: 10.1134/S0037446622020094 | ||||
Tags | 517.987; Birkhoff ergodic theorem; ergodic theorems for subsequences; rate of convergence in ergodic theorems | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | 0314-2019-0005 |
Abstract:
We study the separation from zero of a sequence $ \phi $to obtain the estimates of the form $ {\phi(n)/n} $ for the rate ofpointwise convergence of ergodic averages.Each of these $ \phi $ is shown to be separated from zero for mixingswhich is not always so for weak mixings.Moreover, for the characteristic function of a nontrivial set,it is shown that there exists a measure preserving transformation witharbitrarily slow decay of ergodic averages.
Cite:
Podvigin I.V.
On Possible Estimates of the Rate of Pointwise Convergence in the Birkhoff Ergodic Theorem
Siberian Mathematical Journal. 2022. V.63. N2. P.316-325. DOI: 10.1134/S0037446622020094 WOS Scopus РИНЦ OpenAlex
On Possible Estimates of the Rate of Pointwise Convergence in the Birkhoff Ergodic Theorem
Siberian Mathematical Journal. 2022. V.63. N2. P.316-325. DOI: 10.1134/S0037446622020094 WOS Scopus РИНЦ OpenAlex
Original:
Podvigin I.V.
О возможных оценках скорости поточечной сходимости в эргодической теореме Биркгофа
Сибирский математический журнал. 2022. Т.63. №2. С.379-390. DOI: 10.33048/smzh.2022.63.209 РИНЦ
О возможных оценках скорости поточечной сходимости в эргодической теореме Биркгофа
Сибирский математический журнал. 2022. Т.63. №2. С.379-390. DOI: 10.33048/smzh.2022.63.209 РИНЦ
Identifiers:
Web of science: | WOS:000778950000009 |
Scopus: | 2-s2.0-85127770835 |
Elibrary: | 48426863 |
OpenAlex: | W4225847979 |