Sciact
  • EN
  • RU

Nonlinear Stability of MHD Contact Discontinuities with Surface Tension Научная публикация

Журнал Archive for Rational Mechanics and Analysis
ISSN: 0003-9527 , E-ISSN: 1432-0673
Вых. Данные Год: 2022, Том: 243, Номер: 2, Страницы: 1091-1149 Страниц : 59 DOI: 10.1007/s00205-021-01740-6
Авторы Trakhinin Y. 1,2 , Wang T. 3,4
Организации
1 Sobolev Institute of Mathematics, Koptyug av. 4, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation
3 School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
4 Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, 430072, China

Информация о финансировании (1)

1 Российский научный фонд 20-11-20036

Реферат: We consider the motion of two inviscid, compressible, and electrically conducting fluids separated by an interface across which there is no fluid flow in the presence of surface tension. The magnetic field is supposed to be nowhere tangential to the interface. This leads to the characteristic free boundary problem for contact discontinuities with surface tension in three-dimensional ideal compressible magnetohydrodynamics (MHD). We prove the nonlinear structural stability of MHD contact discontinuities with surface tension in Sobolev spaces by a modified Nash–Moser iteration scheme. The main ingredient of our proof is deriving the resolution and tame estimate of the linearized problem in usual Sobolev spaces of sufficiently large regularity. In particular, for solving the linearized problem, we introduce a suitable regularization that preserves the transport-type structure for the linearized entropy and divergence of the magnetic field.
Библиографическая ссылка: Trakhinin Y. , Wang T.
Nonlinear Stability of MHD Contact Discontinuities with Surface Tension
Archive for Rational Mechanics and Analysis. 2022. V.243. N2. P.1091-1149. DOI: 10.1007/s00205-021-01740-6 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000741928800001
Scopus: 2-s2.0-85122814127
РИНЦ: 48142571
OpenAlex: W3161442425
Цитирование в БД:
БД Цитирований
Scopus 7
Web of science 7
OpenAlex 9
РИНЦ 7
Альметрики: