Sciact
  • EN
  • RU

On Linearly Unstable Steady States of an MHD Model of an Incompressible Polymeric Fluid in the Case of Absolute Conductivity Научная публикация

Журнал Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Вых. Данные Год: 2022, Том: 32, Номер: 1, DOI: 10.1134/S1055134422010011
Ключевые слова incompressible viscoelastic polymeric medium; Lyapunov stability; magnetohydrodynamic flow; Poiseuille-type flow; rheological correlation; spectrum
Авторы Blokhin A.M. 1 , Tkachev D.L. 1
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russian Federation

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0008

Реферат: Abstract: We study linear stability of steady states for a certain generalization (namely,nonisothermal flows under the influence of magnetic field) of the Pokrovskiĭ–Vinogradovbasic rheological model which describes flows of solutions and melts of incompressible viscoelasticpolymeric media. We prove that the linear problem describing magnetohydrodynamic (MHD) flowof polymers in an infinite plane channel has the following property: For a certain behavior ofmagnetic field outside of the channel, there exists a solution of the problem whose amplitudegrows exponentially (in the class of functions that are periodic with respect to the variablechanging along the side of the channel). © 2022, Pleiades Publishing, Ltd.
Библиографическая ссылка: Blokhin A.M. , Tkachev D.L.
On Linearly Unstable Steady States of an MHD Model of an Incompressible Polymeric Fluid in the Case of Absolute Conductivity
Siberian Advances in Mathematics. 2022. V.32. N1. DOI: 10.1134/S1055134422010011 Scopus РИНЦ OpenAlex
Оригинальная: Блохин А.М. , Ткачев Д.Л.
Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости (случай абсолютной проводимости)
Математические труды. 2021. Т.24. №1. С.35-51.
Идентификаторы БД:
Scopus: 2-s2.0-85126528033
РИНЦ: 48193326
OpenAlex: W4226524789
Цитирование в БД:
БД Цитирований
Scopus 4
РИНЦ 3
OpenAlex 2
Альметрики: