Sciact
  • EN
  • RU

Integro-local limit theorems for supercritical branching process in a random environment Научная публикация

Журнал Statistics and Probability Letters
ISSN: 0167-7152
Вых. Данные Год: 2022, Том: 181, Номер статьи : 109234, Страниц : DOI: 10.1016/j.spl.2021.109234
Ключевые слова Branching process; Large deviations; Light tail distribution; Random environment
Авторы Struleva M.A. 1 , Prokopenko E.I. 1
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Информация о финансировании (2)

1 Российский фонд фундаментальных исследований 20-51-12007
2 Институт математики им. С.Л. Соболева СО РАН 0250-2019-0001

Реферат: Let Zn be a supercritical branching process in a random environment (BPRE). Under certain moment assumptions, we present the precise asymptotics for the “integro-local” probabilities P(logZn∈[x(n),x(n)+Δn)), where Δn→0 and x(n)→∞ as n→∞. In particular, this implies the large deviations tail asymptotics for P(logZn⩾x(n)) as n→∞. Like in previous research, we can see that, in the light-tail case, the main term in the large deviations asymptotics for the BPRE is provided by the associated random walk.
Библиографическая ссылка: Struleva M.A. , Prokopenko E.I.
Integro-local limit theorems for supercritical branching process in a random environment
Statistics and Probability Letters. 2022. V.181. 109234 . DOI: 10.1016/j.spl.2021.109234 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000712136100008
Scopus: 2-s2.0-85116937781
РИНЦ: 47512243
OpenAlex: W3204686564
Цитирование в БД:
БД Цитирований
Scopus 2
Web of science 2
OpenAlex 4
РИНЦ 3
Альметрики: