Sciact
  • EN
  • RU

On the number of q-ary quasi-perfect codes with covering radius 2 Full article

Journal Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586
Output data Year: 2022, Volume: 90, Number: 8, Pages: 1713-1719 Pages count : 7 DOI: 10.1007/s10623-022-01070-y
Tags Galois geometry; Generalized Reed–Muller codes; Quasi-perfect codes; Switching construction
Authors Romanov A.M. 1
Affiliations
1 Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, Novosibirsk, 630090, Russian Federation

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0018

Abstract: In this paper we present a family of q-ary nonlinear quasi-perfect codes with covering radius 2. The codes have length n= qm and size M= qn-m-1 where q is a prime power, q≥ 3 , m is an integer, m≥ 2. We prove that there are more than qqcn nonequivalent such codes of length n, for all sufficiently large n and a constant c=1q-ε. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Cite: Romanov A.M.
On the number of q-ary quasi-perfect codes with covering radius 2
Designs, Codes and Cryptography. 2022. V.90. N8. P.1713-1719. DOI: 10.1007/s10623-022-01070-y WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000815470500003
Scopus: 2-s2.0-85132720135
Elibrary: 49151513
OpenAlex: W3208605955
Citing:
DB Citing
Scopus 4
Web of science 4
OpenAlex 4
Elibrary 3
Altmetrics: